你有没有想过这样一个场景:无论何时,只要开口,你的 AI 助手就能随时响应你的需求。它能听你说话,理解你的意图,执行任务,甚至记录对话内容,完全实现“Always-On”(始终在线)的体验。今天就跟大家聊聊,如何基于 Deepseek-V3、RealtimeSTT 和 Typer 打造一个“Always-On[1]”的 AI 助手。
一、功能亮点与架构概述
要实现一个始终在线的 AI 助手,我们的核心模块包括:
- 大脑(Brain):由 Deepseek-V3 提供强大的语义理解能力。
- 耳朵(Ears):实时语音识别模块 RealtimeSTT,负责听懂用户说的话。
- 嘴巴(Mouth):通过 ElevenLabs 的语音合成,将回复用自然语言播报出来。
- 记忆(Memory):使用动态存储(如 scratchpad.md)记录任务上下文和用户历史指令。
下面是一张架构图,让大家对整个系统有个直观的了解:
整个过程就是你说一句话,AI 助手实时识别、理解,并快速响应的闭环体验。
二、环境搭建:让系统跑起来
要启动这个“Always-On” AI 助手,先来看看具体的环境配置步骤。
1. 初始化项目
首先从代码仓库下载项目后,按照以下步骤配置环境:
cp .env.sample .env
# 更新配置文件中的 API Key
# DEEPSEEK_API_KEY 和 ELEVEN_API_KEY
2. 安装依赖
确保你的环境支持 Python 3.11(推荐版本),安装依赖:
uv sync
uv python install 3.11
3. 启动基础会话接口
运行以下命令进入基础聊天界面:
uv run python main_base_assistant.py chat
此时,你的 AI 助手可以进行简单的对话。
4. 启动 Typer 高级命令助手
Typer 是更强大的指令助手,它支持复杂任务处理。启动方法如下:
uv run python main_typer_assistant.py awaken \
--typer-file commands/template.py \
--scratchpad scratchpad.md \
--mode execute
接下来,你可以直接用语音向助手下指令了,比如:
“Hello! Ada, ping the server and wait for a response.”
运行后生成的任务命令会自动记录在 scratchpad.md
中,方便后续查看和复盘。
三、核心功能解析:幕后工作机制
1. Deepseek-V3:语义理解引擎
Deepseek-V3 是 AI 助手的“大脑”,负责将语音转成任务命令并执行。比如,用户说“检查服务器状态”,系统会理解为执行 ping
命令。
2. RealtimeSTT:实时语音识别
基于开源项目 RealtimeSTT[2],它能以低延迟识别用户语音,支持 Whisper 模型(包括 SYSTRAN 的加速版)。配置方法:
# 引入 RealtimeSTT
from realtime_stt import SpeechRecognizer
# 初始化语音识别器
recognizer = SpeechRecognizer(model="whisper")
# 开始监听语音输入
for result in recognizer.listen():
print("识别结果:", result.text)
3. Typer:任务执行助手
Typer 的设计思路是将用户语音解析成一系列指令,并动态记录在 scratchpad 中,便于回溯和任务管理。例如:
# commands/template.py 示例
def ping_server():
print("Pinging server...")
response = os.system("ping -c 1 example.com")
return response
4. ElevenLabs:语音播报模块
通过 ElevenLabs[3],我们可以合成高质量的语音回复,为用户提供更自然的互动体验。
四、工具选型对比:找到最适合你的方案
如果你在搭建类似项目时有其他备选方案,不妨看看下面的对比表:
五、如何系统学习掌握AI大模型?
AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。
学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。
这里给大家精心整理了一份
全面的AI大模型学习资源
,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享
!
1. 成长路线图&学习规划
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
2. 大模型经典PDF书籍
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)
3. 大模型视频教程
对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
4. 2024行业报告
行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。
5. 大模型项目实战
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
6. 大模型面试题
面试不仅是技术的较量,更需要充分的准备。
在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以
微信扫描下方CSDN官方认证二维码
,免费领取【保证100%免费
】
引用链接
[1]
Always-On: https://github.com/disler/always-on-ai-assistant
[2]
RealtimeSTT: https://github.com/KoljaB/RealtimeSTT
[3]
ElevenLabs: https://elevenlabs.io