DeepSeek的R1模型在处理逻辑推理、数学计算以及复杂问答等任务时,能够显式地展示其推理过程。R1深度推理的核心技术在于所采用的思维链(Chain of Thought,CoT)技术。思维链技术灵感来源于人类的思考方式,它要求模型将复杂问题逐步分解为多个简单步骤,并按照这些步骤逐一推导出最终答案。
通过这种分步推理的方法,R1模型的回答不仅更加精确可靠,而且其思考过程也变得清晰可懂。用户不再仅仅得到一个最终答案,而是能够跟随模型的思路,逐步理解它是如何得出这一结论的。
一、思维链(CoT)
思维链(Chain of Thought,CoT)是什么?
思维链(CoT)是一种通过分步推理展示思考过程,增强大模型在复杂任务中推理能力和可解释性的技术。
思维链(CoT)的概念在论文《Chain-of-Thought Prompting Elicits Reasoning in Large Language Models》中被提出。
思维链的核心理念在于让模型像人类一样,将问题分解为多个步骤,逐步推导出答案。
-
首先,思维链允许模型将多步骤问题分解为中间步骤,这意味着可以将额外的计算能力分配给需要更多推理步骤的问题。
-
其次,思维链为模型的行为提供了一个可解释的窗口,揭示了模型是如何得出特定答案的,并提供了在推理路径出错时进行调试的机会。
-
第三,思维链推理可用于数学文字题、常识推理和符号操作等任务,并且原则上至少可能适用于人类可以通过语言解决的任何任务。
-
最后,只需在少样本提示的示例中包含思维链序列的示例,就可以在足够大的现成语言模型中轻松引发思维链推理。
**DeepSeek-R1如何使用思维链(CoT)?
DeepSeek-R1首先让模型具有输出思维链的能力,然后再使用人类反馈强化学习(RLHF)和基于规则的推理奖励(Rule Base Reward for Reasoning)对模型进行强化学习的训练。
DeepSeek-R1模型在推理过程中就能够自然地生成思维链,并按照人类期望的方式进行推理。
二、Chain-of-Thought Prompting
Chain-of-Thought Prompting是什么?
Chain-of-Thought Prompting是通过在提示中包含中间推理步骤的示例,引导大语言模型生成类似的思维链。
-
分步提示设计:在编写大模型应用时,通过特定格式的提示(Prompt)要求模型展示思考过程。使用关键词如“Let’s think step by step”触发逐步推理。支持零样本(Zero-shot)和少样本(Few-shot)两种模式。
-
中间状态生成: 模型生成中间推理步骤作为文本,每个步骤作为后续推理的上下文基础。通过自回归方式逐步生成内容。
-
结果提取:从生成的文本中解析最终答案。通常以“Therefore, the answer is”等关键词标识结论。
如何让大语言模型(LLM)生成思维链?通过Chain-of-Thought Prompting,可以在少样本提示的示例中提供思维链推理的演示,让大语言模型能够生成思维链。
在少样本提示中,为每个示例添加与答案相关的思维链。这些示例应该清晰地展示如何从问题出发,通过一系列中间步骤,最终得出结论。
这样可以引导LLM在回答新问题时,也按照类似的思维链进行推理,通过这些包含中间推理步骤的示例,LLM能够学习到如何分解问题并生成思维链。
三、如何系统学习掌握AI大模型?
AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。
学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。
这里给大家精心整理了一份
全面的AI大模型学习资源
,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享
!
1. 成长路线图&学习规划
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
2. 大模型经典PDF书籍
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)
3. 大模型视频教程
对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
4. 2024行业报告
行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。
5. 大模型项目实战
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
6. 大模型面试题
面试不仅是技术的较量,更需要充分的准备。
在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以
微信扫描下方CSDN官方认证二维码
,免费领取【保证100%免费
】