(1) yolo11学习

目录结构

ultralytics
├── __init__.py
├── __pycache__
├── assets
├── cfg
├── data
├── engine
├── hub
├── models
├── nn
├── solutions
├── trackers
└── utils
 

1. __init__.py

  • 作用:将一个目录标记为一个 Python 包(package),并可以用于初始化该包的行为

2. __pycache__

  • 作用:这个目录是 Python 的缓存目录,用于存储编译后的 .pyc 文件。这些文件是 Python 源文件的字节码版本,用于加速程序的启动时间。

3. assets

  • 作用:通常用于存放项目中使用的静态资源,比如预训练模型权重文件、配置文件、示例图片或视频等。

4. cfg

  • 作用:存放项目的配置文件,通常是 YAML 或 JSON 格式。这些文件用于定义模型的结构、训练参数、数据路径等。

5. data

  • 作用:存放数据集相关的内容,包括数据集的脚本、数据预处理代码、数据集的配置文件等。

6. engine

  • 作用:包含项目的主逻辑代码,如训练、验证、测试等核心功能的实现。

7. hub

  • 作用:用于模型的加载和管理,与模型的下载、缓存、加载等功能相关。

8. models

  • 作用:存放模型的定义代码,包括模型的架构和实现。

9. nn

  • 作用:定义了自定义的神经网络层和模块

10. solutions

  • 作用:存放项目中的一些解决方案代码,如停车管理、队列管理等。

11. trackers

  • 作用:用于存放目标跟踪算法的实现,如 ByteTrack、BotSort。

12. utils

  • 作用:存放项目中提供的通用工具函数,如绘图、日志记录、性能评估等。

__init__.py代码阅读

# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license

# 初始化和配置 Ultralytics 提供的 YOLO 模型及相关工具的运行环境,并为后续的模型加载、训练或推理做好准备。
# 定义了Ultralytics 工具的版本号,方便后续版本管理和兼容性检查。
__version__ = "8.3.81"

import os

# 检查是否设置了 OMP_NUM_THREADS 环境变量。如果没有设置,则将其值设置为 1。
# 作用:限制 OpenMP 使用的线程数,减少 CPU 资源占用,避免在多线程环境中过度消耗计算资源,尤其在训练或推理时对性能优化有帮助。
if not os.environ.get("OMP_NUM_THREADS"):
    os.environ["OMP_NUM_THREADS"] = "1"

# 导入了 Ultralytics 提供的多种模型,这些模型可以用于不同的计算机视觉任务,例如目标检测、分割等。

# YOLO-NAS 是一种基于神经架构搜索(NAS)设计的目标检测模型,通过自动化的架构搜索优化模型性能
    # --->适用于需要高效目标检测的场景,尤其是在资源受限的环境中,如移动设备或嵌入式系统
# RTDETR 是一种高效的目标检测模型,结合了 DETR(Detection Transformer)的精度和实时性能
    # --->适用于对精度要求较高的目标检测任务,如安防监控、自动驾驶等领域
# SAM 是一种通用的分割模型,能够对图像中的任何对象进行分割
    # --->适用于需要灵活分割的对象检测任务,如医学影像分析、内容创作等
# YOLO 是一种单阶段目标检测框架,能够在单次前向传递中同时预测边界框和类别概率
    # --->广泛应用于实时目标检测任务,如自动驾驶、安防监控、工业自动化等
# FastSAM 是一种实时图像分割模型,基于 YOLOv8 架构,支持多种提示引导的分割方式,如边界框、点击和文本描述
    # --->适用于需要快速响应的图像分割任务,如自动驾驶、医疗影像分析、增强现实(AR)等
# YOLO-World 是一种结合视觉和语言的下一代目标检测模型,支持开放词汇检测和文本引导的分割
    # --->适用于需要结合文本信息进行目标检测的场景,如自动驾驶、内容创作、安防监控等
from ultralytics.models import NAS, RTDETR, SAM, YOLO, FastSAM, YOLOWorld

# 导入了工具函数和配置:
# ASSETS:可能包含预训练模型文件、数据集等资源的路径。
# SETTINGS:全局配置信息。
# check_yolo:用于检查 YOLO 模型的工具函数。
# download:用于下载预训练模型或其他资源的函数。
from ultralytics.utils import ASSETS, SETTINGS
from ultralytics.utils.checks import check_yolo as checks
from ultralytics.utils.downloads import download

settings = SETTINGS
# 定义了当前模块中可以被外部导入的变量和函数列表,包括版本号、模型类、工具函数等。
__all__ = (
    "__version__",
    "ASSETS",
    "YOLO",
    "YOLOWorld",
    "NAS",
    "SAM",
    "FastSAM",
    "RTDETR",
    "checks",
    "download",
    "settings",
)

# 总结
# 1.初始化包的运行环境:通过设置环境变量和导入必要的模块,为包的使用做好准备。
# 2.定义包的公共接口:通过 __all__ 列表,明确哪些内容可以被外部使用。
# 3.组织和提供模块访问:将多个模型和工具函数集中导入,方便使用者通过包的顶层接口直接访问。

cfg目录代码阅读

cfg
├── __init__.py
├── __pycache__
├── datasets
├── default.yaml
├── models
├── solutions
└── trackers
 

datasets:存放所有数据集相关的配置文件,这些文件定义了数据集的路径、类别、数据划分等信息。

default.yaml:定义项目的默认配置,通常包含全局设置,如训练参数、模型保存路径、日志设置等。

models 文件夹:存放所有模型相关的配置文件,定义了不同版本和类型的 YOLO 模型的架构。

每个文件(如 yolo11.yamlyolo12.yaml)定义了一个模型的结构,包括:输入尺寸、主干网络(Backbone)、颈部结构(Neck)、头部结构(Head)

solutions 文件夹: 存放与特定解决方案相关的配置文件

trackers 文件夹: 存放与目标跟踪相关的配置文件

data/carparts-seg.yaml 阅读

#说明该数据集或相关代码遵循 AGPL-3.0 许可证。
#AGPL-3.0 许可证:是一种开源许可证,要求任何使用该代码或数据集的项目也必须开源。如果需要在商业项目中使用而不开源,需要申请企业许可证。
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license

#提供了数据集的官方文档链接。
# Documentation: https://docs.ultralytics.com/datasets/segment/carparts-seg/

#Carparts Segmentation Dataset 是一个用于计算机视觉应用的数据集,专注于汽车零部件的分割任务。
#它包含从多个角度拍摄的图像和视频,用于训练和测试分割模型。

# 使用方法: yolo train data=carparts-seg.yaml
# 默认下载位置
# parent
# ├── ultralytics
# └── datasets
#     └── carparts-seg  ← downloads here (132 MB)

#数据集的训练集、验证集和测试集可以通过以下三种方式指定
#  1)dir: path/to/imgs
#  2) file: path/to/imgs.txt
#  3) list: [path/to/imgs1, path/to/imgs2, ..]

#path 是数据集的根目录路径。所有其他路径(如训练集、验证集、测试集的路径)都是相对于这个根目录定义的。
path: ../datasets/carparts-seg # dataset root dir
#定义训练集,验证集,测试集路径(相对位置)
train: train/images # train images (relative to 'path') 3516 images
val: valid/images # val images (relative to 'path') 276 images
test: test/images # test images (relative to 'path') 401 images

#数据集包含 23 个类别,每个类别对应汽车的一个零部件。
names:
  0: back_bumper
  1: back_door
  2: back_glass
  3: back_left_door
  4: back_left_light
  5: back_light
  6: back_right_door
  7: back_right_light
  8: front_bumper
  9: front_door
  10: front_glass
  11: front_left_door
  12: front_left_light
  13: front_light
  14: front_right_door
  15: front_right_light
  16: hood
  17: left_mirror
  18: object
  19: right_mirror
  20: tailgate
  21: trunk
  22: wheel

#数据集的下载链接
download: https://github.com/ultralytics/assets/releases/download/v0.0.0/carparts-seg.zip
data/Argoverse.yaml阅读
# Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license

# Argoverse-HD dataset (ring-front-center camera) https://www.cs.cmu.edu/~mengtial/proj/streaming/ by Argo AI
# Documentation: https://docs.ultralytics.com/datasets/detect/argoverse/
# Example usage: yolo train data=Argoverse.yaml
# parent
# ├── ultralytics
# └── datasets
#     └── Argoverse  ← downloads here (31.5 GB)

# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/Argoverse # dataset root dir
train: Argoverse-1.1/images/train/ # train images (relative to 'path') 39384 images
val: Argoverse-1.1/images/val/ # val images (relative to 'path') 15062 images
test: Argoverse-1.1/images/test/ # test images (optional) https://eval.ai/web/challenges/challenge-page/800/overview

# Classes
names:
  0: person
  1: bicycle
  2: car
  3: motorcycle
  4: bus
  5: truck
  6: traffic_light
  7: stop_sign

#下载和转换脚本(可选配置)  包含一个 Python 脚本,用于下载数据集并将其标注转换为 YOLO 格式。
# Download script/URL (optional) ---------------------------------------------------------------------------------------
download: |
  import json
  from tqdm import tqdm
  from ultralytics.utils.downloads import download
  from pathlib import Path

  # 用于将 Argoverse 数据集的标注转换为 YOLO 格式。
  def argoverse2yolo(set):
      # 初始化标注字典并加载 JSON 文件
      labels = {}
      a = json.load(open(set, "rb"))
      # 遍历标注并转换为 YOLO 格式。 a['annotations']:包含所有标注的列表。
      for annot in tqdm(a['annotations'], desc=f"Converting {set} to YOLOv5 format..."):
          img_id = annot['image_id']
          img_name = a['images'][img_id]['name']
          img_label_name = f'{img_name[:-3]}txt'

          cls = annot['category_id']  # instance class id
          x_center, y_center, width, height = annot['bbox']
          x_center = (x_center + width / 2) / 1920.0  # offset and scale
          y_center = (y_center + height / 2) / 1200.0  # offset and scale
          # 归一化:将边界框坐标归一化到 [0, 1] 范围内
          width /= 1920.0  # scale
          height /= 1200.0  # scale

          # 创建标注文件的目录
          img_dir = set.parents[2] / 'Argoverse-1.1' / 'labels' / a['seq_dirs'][a['images'][annot['image_id']]['sid']]
          if not img_dir.exists():
              img_dir.mkdir(parents=True, exist_ok=True)

          # 存储标注信息, k:标注文件的完整路径。
          k = str(img_dir / img_label_name)
          if k not in labels:
              labels[k] = []
          labels[k].append(f"{cls} {x_center} {y_center} {width} {height}\n")

      # 遍历所有标注文件路径,将标注信息写入对应的 .txt 文件。
      for k in labels:
          with open(k, "w") as f:
              f.writelines(labels[k])


  # 下载数据集
  # Download 'https://argoverse-hd.s3.us-east-2.amazonaws.com/Argoverse-HD-Full.zip' (deprecated S3 link)
  dir = Path(yaml['path'])  # dataset root dir 数据集的根目录。
  urls = ['https://drive.google.com/file/d/1st9qW3BeIwQsnR0t8mRpvbsSWIo16ACi/view?usp=drive_link'] #数据集的下载链接
  # 提示用户手动下载数据集,因为自动下载可能无法工作。
  print("\n\nWARNING: Argoverse dataset MUST be downloaded manually, autodownload will NOT work.")
  print(f"WARNING: Manually download Argoverse dataset '{urls[0]}' to '{dir}' and re-run your command.\n\n")
  # download(urls, dir=dir)

  # 转换标注文件
  # 将 tracking 文件夹重命名为 images
  annotations_dir = 'Argoverse-HD/annotations/'
  (dir / 'Argoverse-1.1' / 'tracking').rename(dir / 'Argoverse-1.1' / 'images')  # rename 'tracking' to 'images'
  
  # 遍历 train.json 和 val.json,调用 argoverse2yolo 函数将标注转换为 YOLO 格式。
  for d in "train.json", "val.json":
      argoverse2yolo(dir / annotations_dir / d)  # convert Argoverse annotations to YOLO labels

关于YOLOv11模型学习率设置和配置,目前并没有公开的官方文档或权威资料提及YOLOv11这一版本的存在。YOLO系列的主要版本包括YOLOv1YOLOv5以及后续的一些改进版(如YOLOX、YOLOv7等)。如果YOLOv11是一个自定义开发或者实验性的版本,则其学习率设置可能会继承或借鉴已有的YOLO版本。 以下是基于现有YOLO版本的知识推测YOLOv11可能采用的学习率配置方法: ### 一、通过命令行参数设置学习率 类似于YOLOv5,在训练YOLOv11时可以通过命令行传递参数来指定学习率调度器及其相关选项。例如: ```bash python train.py --img 640 --batch 16 --epochs 50 --data dataset.yaml --weights yolov11.pt --lr-scheduler cosine --cos-lr True ``` 上述命令中的`--lr-scheduler cosine`指定了使用余弦退火学习率策略[^1],而`--cos-lr True`则进一步确认启用了该功能[^3]。 ### 二、修改配置文件调整超参数 假设YOLOv11沿用了类似的yaml格式配置文件机制,则可以在对应的hyperparameter文件中设定学习率相关的细节。比如编辑`hyp.custom-v11.yaml`文件: ```yaml # Learning rate settings lr0: 0.01 # Initial learning rate (SGD=1E-2, Adam=1E-3) lrf: 0.0001 # Final OneCycleLR learning rate (linear decay from lr0 to lrf) # Scheduler options warmup_epochs: 3 # Warm-up epochs (fractions ok) warmup_momentum: 0.8 # Warm-up initial momentum # Other parameters... box: 0.05 # Box loss gain cls: 0.3 # Class loss gain obj: 1.0 # Objectness loss gain (scale with pixels) ``` 这里的关键字段解释如下: - `lr0`: 初始学习率; - `lrf`: 训练结束时的目标学习率; - `warmup_epochs`: 温暖期持续的时间长度,期间逐渐提升实际使用的有效学习率直至达到`lr0`水平[^5]; ### 三、注意事项与建议实践 当设计新的神经网络架构并引入创新特性时,合理的选择初始学习率至关重要。过大可能导致梯度爆炸从而破坏整个优化过程;反之太低又会延长收敛时间甚至陷入局部极小值难以逃脱。因此推荐遵循以下原则进行调试验证: - 对于大规模图像分类任务可尝试从0.1起步逐步降低寻找最佳点; - 小样本场景下适当减少基线数值譬如设为0.001配合Adam优化算法共同作用效果更佳; - 结合早停法(Early Stopping)监控验证集表现及时终止无意义迭代节省资源消耗。 ### 四、代码片段展示如何动态改变学习率 下面给出一段Python伪代码演示怎样利用PyTorch内置工具实现自适应调节学习速率的功能: ```python import torch.optim as optim from torch.optim.lr_scheduler import CosineAnnealingLR optimizer = optim.SGD(model.parameters(), lr=config['lr0'], momentum=0.9, weight_decay=5e-4) scheduler = CosineAnnealingLR(optimizer, T_max=config['epochs']) for epoch in range(config['epochs']): for inputs, labels in dataloader: optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() scheduler.step() # Update the learning rate at each epoch's end. ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值