暂退法(丢弃法)

目录

一、丢弃法原理介绍

1、动机

2、无偏差的加入噪音

3、丢弃法的使用

4、推理中的丢弃法

5、总结

二、暂退法从零开始实现

1、定义dropout函数

2、定义模型参数

3、定义模型

4、训练和测试

三、暂退法简洁实现

1、定义模型

2、训练和测试

四、总结


       在深度学习中,丢弃法(Dropout)是一种常用的正则化技术,旨在减少模型的过拟合现象,可能会比之前的权重衰减(Weight Decay)效果更好。通过在训练过程中随机丢弃一部分神经元,可以有效地减少神经网络中的参数依赖性,增强模型的泛化能力。

一、丢弃法原理介绍

1、动机

       一个好的模型需要对输入数据的扰动鲁棒,也就是说,不管图片加入多少噪音,我也是能看清楚的。使用有噪音的数据等价于Tikhonov正则,正则使得权重值范围不会太大,避免一定的过拟合。与之前加入的噪音不一样,之前是固定噪音,丢弃法是随机噪音,丢弃法不是在输入加噪音,而是在层之间加入噪音,所以丢弃法也算是一个正则。

2、无偏差的加入噪音

       假如$x$是上一层到下一层的某一个输出(上一层输出向量的某一个元素)的话,对$x$加入噪音得到$x'$,我们希望加入噪音后不改变期望,即:

$ E\left[ x' \right] =x $

       丢弃法对上一层输出向量的每一个元素做如下扰动:

       此时这个元素的期望是不变的:

$ E\left[ x' \right] =p\cdot 0+\left( 1-p \right) \frac{x}{1-p}=x $

3、丢弃法的使用

       通常将丢弃法作用在隐藏全连接层的输出上。如图"MLP with one hidden layer"带有1个隐藏层和5个隐藏单元的多层感知机。当我们将暂退法应用到隐藏层,以$p$的概率将隐藏单元置为零时,结果可以看作一个只包含原始神经元子集的网络。比如在图"Hidden layer after dropout"中,删除了$h_2$$h_5$,因此输出的计算不再依赖于$h_2$$h_5$,并且它们各自的梯度在执行反向传播时也会消失。这样,输出层的计算不能过度依赖于$h_1, \ldots, h_5$的任何一个元素。

4、推理中的丢弃法

5、总结

  • 丢弃法将一些输出项随机置0来控制模型复杂度
  • 常作用在多层感知机的隐藏层输出上
  • 丢弃概率是控制模型复杂度的超参数

二、暂退法从零开始实现

1、定义dropout函数

       要实现单层的暂退法函数,我们从均匀分布$U[0, 1]$中抽取样本,样本数与这层神经网络的维度一致。然后我们保留那些对应样本大于$p$的节点,把剩下的丢弃。

       在下面的代码中,我们实现 `dropout_layer` 函数,该函数以`dropout`的概率丢弃张量输入`X`中的元素,如上所述重新缩放剩余部分:将剩余部分除以`1.0-dropout`。

import torch
from torch import nn
from d2l import torch as d2l

def dropout_layer(X, dropout):
    assert 0 <= dropout <= 1
    # 在本情况中,所有元素都被丢弃
    if dropout == 1:
        return torch.zeros_like(X)
    # 在本情况中,所有元素都被保留
    if dropout == 0:
        return X
    # torch.rand(X.shape)生成了一个与输入张量X相同形状的随机数张量,其中的元素值在[0, 1)的区间内均匀分布。
    # (torch.rand(X.shape) > dropout)执行了一个逻辑判断,将随机数张量中大于dropout的元素置为True,小于等于dropout的元素置为False。
    # .float()将布尔型张量转换为浮点型张量,将True转换为1.0,将False转换为0.0。
    mask = (torch.rand(X.shape) > dropout).float()
    return mask * X / (1.0 - dropout)

       我们可以通过下面几个例子来测试`dropout_layer`函数。我们将输入`X`通过暂退法操作,暂退概率分别为0、0.5和1。

X= torch.arange(16, dtype = torch.float32).reshape((2, 8))
print(X)
print(dropout_layer(X, 0.))
print(dropout_layer(X, 0.5))
print(dropout_layer(X, 1.))
tensor([[ 0.,  1.,  2.,  3.,  4.,  5.,  6.,  7.],
        [ 8.,  9., 10., 11., 12., 13., 14., 15.]])
tensor([[ 0.,  1.,  2.,  3.,  4.,  5.,  6.,  7.],
        [ 8.,  9., 10., 11., 12., 13., 14., 15.]])
tensor([[ 0.,  2.,  0.,  6.,  0.,  0.,  0., 14.],
        [16., 18.,  0., 22.,  0., 26., 28., 30.]])
tensor([[0., 0., 0., 0., 0., 0., 0., 0.],
        [0., 0., 0., 0., 0., 0., 0., 0.]])

2、定义模型参数

       同样,我们使用Softmax回归中引入的Fashion-MNIST数据集(不懂的可以看链接里面的文章)。我们定义具有两个隐藏层的多层感知机,每个隐藏层包含256个单元。

num_inputs, num_outputs, num_hiddens1, num_hiddens2 = 784, 10, 256, 256

3、定义模型

       我们可以将暂退法应用于每个隐藏层的输出(在激活函数之后),并且可以为每一层分别设置暂退概率:常见的技巧是在靠近输入层的地方设置较低的暂退概率。下面的模型将第一个和第二个隐藏层的暂退概率分别设置为0.2和0.5,并且暂退法只在训练期间有效。

dropout1, dropout2 = 0.2, 0.5    # 在靠近输入层的地方设置较低的暂退概率,因此dropout1设为0.2

class Net(nn.Module):
    def __init__(self, num_inputs, num_outputs, num_hiddens1, num_hiddens2,
                 is_training = True):
        super(Net, self).__init__()
        self.num_inputs = num_inputs
        self.training = is_training
        self.lin1 = nn.Linear(num_inputs, num_hiddens1)
        self.lin2 = nn.Linear(num_hiddens1, num_hiddens2)
        self.lin3 = nn.Linear(num_hiddens2, num_outputs)
        self.relu = nn.ReLU()

    def forward(self, X):
        H1 = self.relu(self.lin1(X.reshape((-1, self.num_inputs))))
        # 只有在训练模型时才使用dropout
        if self.training == True:
            # 在第一个全连接层之后添加一个dropout层
            H1 = dropout_layer(H1, dropout1)
        H2 = self.relu(self.lin2(H1))
        if self.training == True:
            # 在第二个全连接层之后添加一个dropout层
            H2 = dropout_layer(H2, dropout2)
        out = self.lin3(H2)
        return out


net = Net(num_inputs, num_outputs, num_hiddens1, num_hiddens2)

4、训练和测试

       这类似于前面描述的多层感知机训练和测试。

num_epochs, lr, batch_size = 10, 0.5, 256
loss = nn.CrossEntropyLoss(reduction='none')
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
trainer = torch.optim.SGD(net.parameters(), lr=lr)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)

三、暂退法简洁实现

1、定义模型

       对于深度学习框架的高级API,我们只需在每个全连接层之后添加一个`Dropout`层,将暂退概率作为唯一的参数传递给它的构造函数。在训练时,`Dropout`层将根据指定的暂退概率随机丢弃上一层的输出(相当于下一层的输入)。在测试时,`Dropout`层仅传递数据。

net = nn.Sequential(nn.Flatten(),
        nn.Linear(784, 256),
        nn.ReLU(),
        # 在第一个全连接层之后添加一个dropout层
        nn.Dropout(dropout1),
        nn.Linear(256, 256),
        nn.ReLU(),
        # 在第二个全连接层之后添加一个dropout层
        nn.Dropout(dropout2),
        nn.Linear(256, 10))

def init_weights(m):
    if type(m) == nn.Linear:
        nn.init.normal_(m.weight, std=0.01)

net.apply(init_weights)

2、训练和测试

       接下来,我们对模型进行训练和测试。

trainer = torch.optim.SGD(net.parameters(), lr=lr)
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)

四、总结

  • 暂退法在前向传播过程中,计算每一内部层的同时丢弃一些神经元。
  • 暂退法可以避免过拟合,它通常与控制权重向量的维数和大小结合使用的。
  • 暂退法将活性值$h$替换为具有期望值$h$的随机变量。
  • 暂退法仅在训练期间使用。
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
同时使用暂退法和权重衰减可以通过以下步骤实现: 1. 定义模型架构:选择适当的神经网络架构,如卷积神经网络(CNN)或循环神经网络(RNN),并确定层的数量和大小。 2. 添加暂退法:在每个隐藏层中添加暂退层。暂退层将在每个训练批次中以一定的概率随机丢弃一部分神经元的输出。这可以通过在每个隐藏层后面添加一个暂退层,并设置相应的丢弃概率来实现。 3. 添加权重衰减:在损失函数中添加权重衰减项。权重衰减将在训练过程中减小权重的大小,以防止模型过度拟合。可以通过将权重衰减项添加到损失函数中,并设置相应的权重衰减系数来实现。 4. 定义损失函数和优化器:选择适当的损失函数,如交叉熵损失或均方误差损失,并选择合适的优化器,如随机梯度下降(SGD)或Adam。 5. 训练模型:使用训练数据对模型进行训练。在每个训练批次中,通过向前传播计算损失,并通过反向传播更新模型的权重。同时,暂退法和权重衰减会在训练过程中起作用,减少过拟合的风险。 6. 超参数调优:调整暂退法丢弃概率和权重衰减的系数,以找到最佳的超参数组合。可以使用交叉验证或其他评估方来评估模型在验证集上的性能,并选择最佳的超参数。 7. 测试模型:使用测试数据评估模型的性能。通过向前传播计算预测结果,并与真实标签进行比较,评估模型的准确率或其他性能指标。 重要的是要注意,暂退法和权重衰减的效果会受到数据集、模型架构和超参数设置的影响。因此,需要进行实验和调优,找到最佳的超参数组合来提高模型的性能和泛化能力。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值