昇思25天学习打卡营第5天|数据变换Transformer

在深度学习中,直接加载的原始数据通常不能直接送入神经网络进行训练,需要对其进行数据预处理。MindSpore提供了一系列的数据变换(Transforms),通过与数据处理Pipeline结合,实现高效的数据预处理。所有的Transforms均可通过map方法传入,实现对指定数据列的处理。mindspore.dataset模块支持对图像、文本、音频等不同数据类型的Transforms,同时也支持使用Lambda函数定义自定义的变换操作。利用这些Transforms,可以对数据进行标准化、归一化、格式转换等操作,从而使数据更适合模型训练。通过这些数据预处理步骤,可以极大提高模型的训练效率和效果。本教程详细介绍了常见的Transforms及其应用方式,帮助用户更好地理解和使用这些工具来进行数据预处理,从而为后续的模型训练打下坚实的基础。

数据变换 Transforms

通常情况下,直接加载的原始数据并不能直接送入神经网络进行训练,此时我们需要对其进行数据预处理。MindSpore提供不同种类的数据变换(Transforms),配合数据处理Pipeline来实现数据预处理。所有的Transforms均可通过map方法传入,实现对指定数据列的处理。

mindspore.dataset提供了面向图像、文本、音频等不同数据类型的Transforms,同时也支持使用Lambda函数。下面分别对其进行介绍。

[15]:

%%capture captured_output
# 实验环境已经预装了mindspore==2.2.14,如需更换mindspore版本,可更改下面mindspore的版本号
!pip uninstall mindspore -y
!pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspore==2.2.14

[16]:

import numpy as np
from PIL import Image
from download import download
from mindspore.dataset import transforms, vision, text
from mindspore.dataset import GeneratorDataset, MnistDataset

Common Transforms

mindspore.dataset.transforms模块支持一系列通用Transforms。这里我们以Compose为例,介绍其使用方式。

Compose

Compose接收一个数据增强操作序列,然后将其组合成单个数据增强操作。我们仍基于Mnist数据集呈现Transforms的应用效果。

[17]:

# Download data from open datasets
url = "https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/" \
      "notebook/datasets/MNIST_Data.zip"
path = download(url, "./", kind="zip", replace=True)
train_dataset = MnistDataset('MNIST_Data/train')
Downloading data from https://mindspore-website.obs.cn-north-4.myhuaweicloud.com/notebook/datasets/MNIST_Data.zip (10.3 MB)

file_sizes: 100%|███████████████████████████| 10.8M/10.8M [00:00<00:00, 146MB/s]
Extracting zip file...
Successfully downloaded / unzipped to ./

[18]:

image, label = next(train_dataset.create_tuple_iterator())
print(image.shape)
(28, 28, 1)

[19]:

composed = transforms.Compose(
    [
        vision.Rescale(1.0 / 255.0, 0),
        vision.Normalize(mean=(0.1307,), std=(0.3081,)),
        vision.HWC2CHW()
    ]
)

[20]:

train_dataset = train_dataset.map(composed, 'image')
image, label = next(train_dataset.create_tuple_iterator())
print(image.shape)
(1, 28, 28)

更多通用Transforms详见mindspore.dataset.transforms

Vision Transforms

mindspore.dataset.vision模块提供一系列针对图像数据的Transforms。在Mnist数据处理过程中,使用了RescaleNormalizeHWC2CHW变换。下面对其进行详述。

Rescale

Rescale变换用于调整图像像素值的大小,包括两个参数:

  • rescale:缩放因子。
  • shift:平移因子。

图像的每个像素将根据这两个参数进行调整,输出的像素值为𝑜𝑢𝑡𝑝𝑢𝑡𝑖=𝑖𝑛𝑝𝑢𝑡𝑖∗𝑟𝑒𝑠𝑐𝑎𝑙𝑒+𝑠ℎ𝑖𝑓𝑡𝑜𝑢𝑡𝑝𝑢𝑡𝑖=𝑖𝑛𝑝𝑢𝑡𝑖∗𝑟𝑒𝑠𝑐𝑎𝑙𝑒+𝑠ℎ𝑖𝑓𝑡。

这里我们先使用numpy随机生成一个像素值在[0, 255]的图像,将其像素值进行缩放。

[21]:

random_np = np.random.randint(0, 255, (48, 48), np.uint8)
random_image = Image.fromarray(random_np)
print(random_np)
[[111 163  82 ...   4 152 168]
 [  1   7 107 ... 181 208  17]
 [ 62 139 204 ...  17 119 169]
 ...
 [241 163 181 ... 237 244 252]
 [ 23  18  30 ... 190 206 208]
 [ 16 192  44 ... 240  17 126]]

为了更直观地呈现Transform前后的数据对比,我们使用Transforms的Eager模式进行演示。首先实例化Transform对象,然后调用对象进行数据处理。

[22]:

rescale = vision.Rescale(1.0 / 255.0, 0)
rescaled_image = rescale(random_image)
print(rescaled_image)
[[0.43529415 0.6392157  0.32156864 ... 0.01568628 0.59607846 0.65882355]
 [0.00392157 0.02745098 0.41960788 ... 0.70980394 0.81568635 0.06666667]
 [0.24313727 0.54509807 0.8000001  ... 0.06666667 0.4666667  0.6627451 ]
 ...
 [0.9450981  0.6392157  0.70980394 ... 0.9294118  0.9568628  0.98823535]
 [0.09019608 0.07058824 0.11764707 ... 0.74509805 0.8078432  0.81568635]
 [0.0627451  0.75294125 0.17254902 ... 0.94117653 0.06666667 0.49411768]]

可以看到,使用Rescale后的每个像素值都进行了缩放。

Normalize

Normalize变换用于对输入图像的归一化,包括三个参数:

  • mean:图像每个通道的均值。
  • std:图像每个通道的标准差。
  • is_hwc:bool值,输入图像的格式。True为(height, width, channel),False为(channel, height, width)。

图像的每个通道将根据meanstd进行调整,计算公式为𝑜𝑢𝑡𝑝𝑢𝑡𝑐=𝑖𝑛𝑝𝑢𝑡𝑐−𝑚𝑒𝑎𝑛𝑐𝑠𝑡𝑑𝑐𝑜𝑢𝑡𝑝𝑢𝑡𝑐=𝑖𝑛𝑝𝑢𝑡𝑐−𝑚𝑒𝑎𝑛𝑐𝑠𝑡𝑑𝑐,其中 𝑐𝑐代表通道索引。

[23]:

normalize = vision.Normalize(mean=(0.1307,), std=(0.3081,))
normalized_image = normalize(rescaled_image)
print(normalized_image)
[[ 0.9886211   1.6504892   0.61950225 ... -0.37330002  1.5104787
   1.7141304 ]
 [-0.41148472 -0.33511534  0.9377082  ...  1.8795974   2.22326
  -0.20783298]
 [ 0.36493757  1.3450117   2.172347   ... -0.20783298  1.090447
   1.7268586 ]
 ...
 [ 2.6432917   1.6504892   1.8795974  ...  2.5923786   2.6814764
   2.783302  ]
 [-0.13146357 -0.19510475 -0.04236592 ...  1.9941516   2.1978035
   2.22326   ]
 [-0.2205612   2.0196083   0.13582934 ...  2.6305635  -0.20783298
   1.1795447 ]]

HWC2CHW

HWC2CHW变换用于转换图像格式。在不同的硬件设备中可能会对(height, width, channel)或(channel, height, width)两种不同格式有针对性优化。MindSpore设置HWC为默认图像格式,在有CHW格式需求时,可使用该变换进行处理。

这里我们先将前文中normalized_image处理为HWC格式,然后进行转换。可以看到转换前后的shape发生了变化。

[24]:

hwc_image = np.expand_dims(normalized_image, -1)
hwc2chw = vision.HWC2CHW()
chw_image = hwc2chw(hwc_image)
print(hwc_image.shape, chw_image.shape)
(48, 48, 1) (1, 48, 48)

更多Vision Transforms详见mindspore.dataset.vision

Text Transforms

mindspore.dataset.text模块提供一系列针对文本数据的Transforms。与图像数据不同,文本数据需要有分词(Tokenize)、构建词表、Token转Index等操作。这里简单介绍其使用方法。

首先我们定义三段文本,作为待处理的数据,并使用GeneratorDataset进行加载。

[25]:

texts = ['Welcome to Beijing']

[26]:

test_dataset = GeneratorDataset(texts, 'text')

PythonTokenizer

分词(Tokenize)操作是文本数据的基础处理方法,MindSpore提供多种不同的Tokenizer。这里我们选择基础的PythonTokenizer举例,此Tokenizer允许用户自由实现分词策略。随后我们利用map操作将此分词器应用到输入的文本中,对其进行分词。

[27]:

def my_tokenizer(content):
    return content.split()
test_dataset = test_dataset.map(text.PythonTokenizer(my_tokenizer))
print(next(test_dataset.create_tuple_iterator()))
[Tensor(shape=[3], dtype=String, value= ['Welcome', 'to', 'Beijing'])]

Lookup

Lookup为词表映射变换,用来将Token转换为Index。在使用Lookup前,需要构造词表,一般可以加载已有的词表,或使用Vocab生成词表。这里我们选择使用Vocab.from_dataset方法从数据集中生成词表。

[28]:

vocab = text.Vocab.from_dataset(test_dataset)

获得词表后我们可以使用vocab方法查看词表。

[29]:

print(vocab.vocab())
{'to': 2, 'Welcome': 1, 'Beijing': 0}

生成词表后,可以配合map方法进行词表映射变换,将Token转为Index。

[30]:

test_dataset = test_dataset.map(text.Lookup(vocab))
print(next(test_dataset.create_tuple_iterator()))
[Tensor(shape=[3], dtype=Int32, value= [1, 2, 0])]

更多Text Transforms详见mindspore.dataset.text

Lambda Transforms

Lambda函数是一种不需要名字、由一个单独表达式组成的匿名函数,表达式会在调用时被求值。Lambda Transforms可以加载任意定义的Lambda函数,提供足够的灵活度。在这里,我们首先使用一个简单的Lambda函数,对输入数据乘2:

[31]:

test_dataset = GeneratorDataset([1, 2, 3], 'data', shuffle=False)
test_dataset = test_dataset.map(lambda x: x * 2)
print(list(test_dataset.create_tuple_iterator()))
[[Tensor(shape=[], dtype=Int64, value= 2)], [Tensor(shape=[], dtype=Int64, value= 4)], [Tensor(shape=[], dtype=Int64, value= 6)]]

可以看到map传入Lambda函数后,迭代获得数据进行了乘2操作。

我们也可以定义较复杂的函数,配合Lambda函数实现复杂数据处理:

[32]:

def func(x):
    return x * x + 2
test_dataset = test_dataset.map(lambda x: func(x))

[33]:

print(list(test_dataset.create_tuple_iterator()))
[[Tensor(shape=[], dtype=Int64, value= 6)], [Tensor(shape=[], dtype=Int64, value= 18)], [Tensor(shape=[], dtype=Int64, value= 38)]]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值