构建神经网络模型是深度学习中的关键步骤。MindSpore提供了丰富的神经网络层和操作,通过继承nn.Cell
类,可以方便地定义和管理复杂的网络结构。Cell
类是MindSpore中所有网络的基类,使用它可以将不同的子Cell
嵌套在一起,从而灵活地构建神经网络模型。
通过面向对象编程的思维,我们可以在__init__
方法中进行子Cell
的实例化和状态管理,并在construct
方法中实现具体的前向传播逻辑。这样的设计使得神经网络的构建过程简洁明了,易于维护和扩展。
在构建用于MNIST数据集分类的模型时,我们定义了一个包含两层全连接层和ReLU激活函数的网络。这个模型首先将28x28的图像展平为一维向量,然后通过全连接层进行处理,最终输出10维的分类结果。
此外,通过打印模型结构和参数,可以直观地查看网络的层次和各层参数,有助于调试和优化模型。利用MindSpore提供的这些工具和方法,可以高效地构建、训练和部署深度学习模型。
网络构建
神经网络模型是由神经网络层和Tensor操作构成的,mindspore.nn提供了常见神经网络层的实现,在MindSpore中,Cell类是构建所有网络的基类,也是网络的基本单元。一个神经网络模型表示为一个Cell
,它由不同的子Cell
构成。使用这样的嵌套结构,可以简单地使用面向对象编程的思维,对神经网络结构进行构建和管理。
下面我们将构建一个用于Mnist数据集分类的神经网络模型。
[ ]:
%%capture captured_output
# 实验环境已经预装了mindspore==2.2.14,如需更换mindspore版本,可更改下面mindspore的版本号
!pip uninstall mindspore -y
!pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspore==2.2.14
[1]:
import mindspore
from mindspore import nn, ops
定义模型类
当我们定义神经网络时,可以继承nn.Cell
类,在__init__
方法中进行子Cell的实例化和状态管理,在construct
方法中实现Tensor操作。
construct
意为神经网络(计算图)构建,相关内容详见使用静态图加速。
[2]:
class Network(nn.Cell):
def __init__(self):
super().__init__()
self.flatten = nn.Flatten()
self.dense_relu_sequential = nn.SequentialCell(
nn.Dense(28*28, 512, weight_init="normal", bias_init="zeros"),
nn.ReLU(),
nn.Dense(512, 512, weight_init="normal", bias_init="zeros"),
nn.ReLU(),
nn.Dense(512, 10, weight_init="normal", bias_init="zeros")
)
def construct(self, x):
x = self.flatten(x)
logits = self.dense_relu_sequential(x)
return logits
构建完成后,实例化Network
对象,并查看其结构。
[3]:
model = Network()
print(model)
[3]:
Network< (flatten): Flatten<> (dense_relu_sequential): SequentialCell< (0): Dense<input_channels=784, output_channels=512, has_bias=True> (1): ReLU<> (2): Dense<input_channels=512, output_channels=512, has_bias=True> (3): ReLU<> (4): Dense<input_channels=512, output_channels=10, has_bias=True> > >
我们构造一个输入数据,直接调用模型,可以获得一个十维的Tensor输出,其包含每个类别的原始预测值。
model.construct()
方法不可直接调用。
[4]:
X = ops.ones((1, 28, 28), mindspore.float32)
logits = model(X)
# print logits
logits
[4]:
Tensor(shape=[1, 10], dtype=Float32, value= [[-5.08734025e-04, 3.39190010e-04, 4.62840870e-03 ... -1.20305456e-03, -5.05689112e-03, 3.99264274e-03]])
在此基础上,我们通过一个nn.Softmax
层实例来获得预测概率。
[5]:
pred_probab = nn.Softmax(axis=1)(logits)
y_pred = pred_probab.argmax(1)
print(f"Predicted class: {y_pred}")
Predicted class: [4]
模型层
本节中我们分解上节构造的神经网络模型中的每一层。首先我们构造一个shape为(3, 28, 28)的随机数据(3个28x28的图像),依次通过每一个神经网络层来观察其效果。
[6]:
input_image = ops.ones((3, 28, 28), mindspore.float32)
print(input_image.shape)
[6]:
(3, 28, 28)
nn.Flatten
实例化nn.Flatten层,将28x28的2D张量转换为784大小的连续数组。
[7]:
flatten = nn.Flatten()
flat_image = flatten(input_image)
print(flat_image.shape)
[7]:
(3, 784)
nn.Dense
nn.Dense为全连接层,其使用权重和偏差对输入进行线性变换。
[8]:
layer1 = nn.Dense(in_channels=28*28, out_channels=20)
hidden1 = layer1(flat_image)
print(hidden1.shape)
[8]:
(3, 20)
nn.ReLU
nn.ReLU层给网络中加入非线性的激活函数,帮助神经网络学习各种复杂的特征。
[9]:
print(f"Before ReLU: {hidden1}\n\n")
hidden1 = nn.ReLU()(hidden1)
print(f"After ReLU: {hidden1}")
Before ReLU: [[-0.04736331 0.2939465 -0.02713677 -0.30988005 -0.11504349 -0.11661264 0.18007928 0.43213072 0.12091967 -0.17465964 0.53133243 0.12605792 0.01825903 0.01287796 0.17238477 -0.1621131 -0.0080034 -0.24523425 -0.10083733 0.05171938] [-0.04736331 0.2939465 -0.02713677 -0.30988005 -0.11504349 -0.11661264 0.18007928 0.43213072 0.12091967 -0.17465964 0.53133243 0.12605792 0.01825903 0.01287796 0.17238477 -0.1621131 -0.0080034 -0.24523425 -0.10083733 0.05171938] [-0.04736331 0.2939465 -0.02713677 -0.30988005 -0.11504349 -0.11661264 0.18007928 0.43213072 0.12091967 -0.17465964 0.53133243 0.12605792 0.01825903 0.01287796 0.17238477 -0.1621131 -0.0080034 -0.24523425 -0.10083733 0.05171938]] After ReLU: [[0. 0.2939465 0. 0. 0. 0. 0.18007928 0.43213072 0.12091967 0. 0.53133243 0.12605792 0.01825903 0.01287796 0.17238477 0. 0. 0. 0. 0.05171938] [0. 0.2939465 0. 0. 0. 0. 0.18007928 0.43213072 0.12091967 0. 0.53133243 0.12605792 0.01825903 0.01287796 0.17238477 0. 0. 0. 0. 0.05171938] [0. 0.2939465 0. 0. 0. 0. 0.18007928 0.43213072 0.12091967 0. 0.53133243 0.12605792 0.01825903 0.01287796 0.17238477 0. 0. 0. 0. 0.05171938]]
nn.SequentialCell
nn.SequentialCell是一个有序的Cell容器。输入Tensor将按照定义的顺序通过所有Cell。我们可以使用SequentialCell
来快速组合构造一个神经网络模型。
[10]:
seq_modules = nn.SequentialCell(
flatten,
layer1,
nn.ReLU(),
nn.Dense(20, 10)
)
logits = seq_modules(input_image)
print(logits.shape)
[10]:
(3, 10)
nn.Softmax
最后使用nn.Softmax将神经网络最后一个全连接层返回的logits的值缩放为[0, 1],表示每个类别的预测概率。axis
指定的维度数值和为1。
[11]:
softmax = nn.Softmax(axis=1)
pred_probab = softmax(logits)
模型参数
网络内部神经网络层具有权重参数和偏置参数(如nn.Dense
),这些参数会在训练过程中不断进行优化,可通过 model.parameters_and_names()
来获取参数名及对应的参数详情。
[12]:
print(f"Model structure: {model}\n\n")
for name, param in model.parameters_and_names():
print(f"Layer: {name}\nSize: {param.shape}\nValues : {param[:2]} \n")
Model structure: Network< (flatten): Flatten<> (dense_relu_sequential): SequentialCell< (0): Dense<input_channels=784, output_channels=512, has_bias=True> (1): ReLU<> (2): Dense<input_channels=512, output_channels=512, has_bias=True> (3): ReLU<> (4): Dense<input_channels=512, output_channels=10, has_bias=True> > > Layer: dense_relu_sequential.0.weight Size: (512, 784) Values : [[-0.01491369 0.00353318 -0.00694948 ... 0.01226766 -0.00014423 0.00544263] [ 0.00212971 0.0019974 -0.00624789 ... -0.01214037 0.00118004 -0.01594325]] Layer: dense_relu_sequential.0.bias Size: (512,) Values : [0. 0.] Layer: dense_relu_sequential.2.weight Size: (512, 512) Values : [[ 0.00565423 0.00354313 0.00637383 ... -0.00352688 0.00262949 0.01157355] [-0.01284141 0.00657666 -0.01217057 ... 0.00318963 0.00319115 -0.00186801]] Layer: dense_relu_sequential.2.bias Size: (512,) Values : [0. 0.] Layer: dense_relu_sequential.4.weight Size: (10, 512) Values : [[ 0.0087168 -0.00381866 -0.00865665 ... -0.00273731 -0.00391623 0.00612853] [-0.00593031 0.0008721 -0.0060081 ... -0.00271535 -0.00850481 -0.00820513]] Layer: dense_relu_sequential.4.bias Size: (10,) Values : [0. 0.]
更多内置神经网络层详见mindspore.nn API。