yolo v11 车辆识别+测速追踪

from ultralytics import YOLO
from ultralytics.solutions import speed_estimation_v10
import cv2

# 加载YOLOv11模型
model = YOLO("yolo11n.pt")  # 替换为实际的YOLOv11模型路径

# 获取模型中的对象名称
names = model.names  # 获取模型类别名称

# 打开视频文件
cap = cv2.VideoCapture("交通路口.mp4")

# 获取视频的宽度、高度和帧率
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))

# 创建视频写入器,用于输出处理后的视频
video_writer = cv2.VideoWriter("out.avi", cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))

# 设置测速线段的两个端点
line_pts = [(0, 360), (1280, 360)]  # 定义测速线段

# 初始化速度估计器
speed_obj = speed_estimation_v10.SpeedEstimator()

# 设置速度估计器的参数,包括测速线段、对象名称和是否显示图像
speed_obj.set_args(reg_pts=line_pts, names=names, view_img=True)

# 循环读取视频帧
while cap.isOpened():
    # 读取一帧
  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值