基于R语言的因子分析

本文介绍了基于R语言的因子分析方法,包括因子分析的基本思想、模型和步骤。通过极大似然法、主成分法以及主成分方差最大化正交因子旋转法求解因子载荷,并通过绘制因子载荷图和因子得分图进行结果解析。实例如例展示了如何对学生的六门成绩进行因子分析,揭示了数据中的公共因子和特殊因子。
摘要由CSDN通过智能技术生成

目录

1.基本理论

        1.1因子分析的基本思想

        1.2因子分析模型

        1.3因子分析的基本步骤

2.因子载荷求解

        2.1极大似然法

        2.2主成分法

        2.3主成分方差最大化正交因子旋转法

        2.4绘制因子载荷图

        2.5绘制每个学生因子得分图


1.基本理论

        1.1因子分析的基本思想

因子分析法是从研究变量内部相关的依赖关系出发,把一些具有错综复杂关系的变量归结为少数几个综合因子的一种多变量统计分析方法。它的基本思想是将观测变量进行分类,将相关性较高,即联系比较紧密的分在同一类中,而不同类变量之间的相关性则较低,那么每一类变量实际上就代表了一个基本结构,即公共因子。对于所研究的问题就是试图用最少个数的不可测的所谓公共因子的线性函数与特殊因子之和来描述原来观测的每一分量。

        1.2因子分析模型

(1)X = (x1,x2,…,xp)是可观测随机向量均值向量E(X)=0,协方差阵Cov(X)=∑,且协方差阵∑与相关矩阵R相等(只要将变量标准化即可实现)。

(2)F = (F1,F2,…,Fm)(m<p)是不可测的向量,其均值向量E(F)=0,协方差矩阵Cov(F) =I,即向量的各分量是相互独立的。

(3)e = (e1,e2,…,ep)¢与F相互独立,且E(e)=0, e的协方差阵∑是对角阵,即各分量e之间是相互独立的,则模型:

 称为因子分析模型,由于该模型是针对变量进行的,各因子又是正交的,所以也称为R型正交因子模型。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值