让我们定义dn为:dn=pn+1−pn,其中pi是第i个素数。显然有d1=1,且对于n>1有dn是偶数。“素数对猜想”认为“存在无穷多对相邻且差为2的素数”。
现给定任意正整数N
(<105),请计算不超过N
的满足猜想的素数对的个数。
输入格式:
输入在一行给出正整数N
。
输出格式:
在一行中输出不超过N
的满足猜想的素数对的个数。
输入样例:
20
输出样例:
4
AC代码:
#include<bits/stdc++.h>
using namespace std;
bool isPrime(int u){ //判断是否是素数
for(int i = 2; i <= sqrt(u); i++){
if(u % i == 0)
return false;
}
return true;
}
int main(){
int N;
int primenum = 0;
cin >> N;
for(int i = 4; i <= N; i++){
//i初始值是4,因为2和3显然不是一对素数对,所以就无需判断2和3
if(isPrime(i-2) && isPrime(i)){
++primenum;
}
}
cout << primenum;
return 0;
}