文章目录
RNN/LSTM/GRU
一、RNN
1、为何引入RNN?
循环神经网络(Recurrent Neural Network,RNN) 是用来建模序列化数据的一种主流深度学习模型。我们知道,传统的前馈神经网络一般的输入都是一个定长的向量,无法处理变长的序列信息,即使通过一些方法把序列处理成定长的向量,模型也很难捕捉序列中的长距离依赖关系。RNN则通过将神经元串行起来处理序列化的数据。由于每个神经元能用它的内部变量保存之前输入的序列信息,因此整个序列被浓缩成抽象的表示,并可以据此进行分类或生成新的序列1。
2、RNN的基本结构
RNN的朴素形式可分别由如下两幅图表示2:
其中 x 1 , x 2 , ⋯ , x T x_1,x_2,\cdots,x_T x1,x2,⋯,xT 是输入,每一个位置是一个实数向量; U U U、 V V V、 W W W 是权重矩阵,通常在模型初始化时随机生成,通过梯度下降进行优化; h t h_t ht 是位于隐藏层上的活性值,很多文献上也称为状态(State)或隐状态(Hidden State); p t p_t pt 表示第 t t t 个位置上的输出。
h t h_t ht、 p t p_t pt 可由下列公式得出( b b b 是偏置项):
h t = tanh ( U ⋅ h t − 1 + W ⋅ x t + b ) h_t=\tanh\left(U\cdot h_{t-1}+W\cdot x_t+b\right) ht=tanh(U⋅ht−1+W⋅xt+b)
p t = s o f t m a x ( V ⋅ h t + c ) p_t=\mathrm{softmax}(V\cdot h_t+c) pt=softmax(V⋅ht+c)
3、各种形式的RNN及其应用
(图片来自于cs231n)
模式 | 描述 | 应用领域 |
---|---|---|
One to One | 单个输入对应单个输出 | 图像分类、回归任务 |
One to Many | 单个输入生成序列输出 | 图像字幕生成、音乐生成 |
Many to One | 序列输入生成单个输出 | 情感分析、时间序列分类 |
Many to Many | 序列输入对应序列输出 | 机器翻译、语音识别 |
Many to Many(同步) | 同步序列输入输出 | 视频帧分类、实时语音处理 |
4、RNN的缺陷
RNN通过在所有时间步共享相同的权重,使得可以在不同时间步之间传递和积累信息,从而更好地捕捉序列数据中的长期依赖关系,但是缺点也很明显:在RNN的学习过程中,由于共享权重 W W W,导致随着时间步的增加,权重矩阵 W W W 不断连乘,最终产生梯度消失(即 ∂ L t ∂ h k \frac{\partial \mathcal{L}_{t}}{\partial \boldsymbol{h}_{k}} ∂hk∂Lt 消失, 1 ≤ k ≤ t 1 \le k\le t 1≤k≤t )和梯度爆炸,具体解释如下:
首先由RNN前向传播公式:
h t = f ( W ⋅ h t − 1 + U ⋅ x t + b ) h_t=f(W\cdot h_{t-1}+U\cdot x_t+b) ht=f(W⋅ht−1+U⋅xt+b)
其中 f f f 为激活函数。
在反向传播时(BPTT),损失函数 L \mathcal{L} L 对某一时间步长的梯度涉及到时间上所有的前置状态,因此梯度会被多个矩阵连乘表示为:
∂ L ∂ h t = ∂ L ∂ h T ⋅ ∏ k = t T − 1 A k \frac{\partial\mathcal{L}}{\partial h_t}=\frac{\partial\mathcal{L}}{\partial h_T}\cdot\prod_{k=t}^{T-1}A_k