Sutherland–Hodgman 算法介绍(简单易懂)

文章介绍了Sutherland-Hodgman算法,一种用于裁剪凸多边形的算法,详细描述了算法步骤和计算细节,包括判断点在裁剪线的哪一侧以及求线段交点的方法。该算法不适用于凹多边形,对于凹多边形的裁剪会存在多余线条,推荐使用Weiler-Atherton算法解决这一问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

一、算法介绍

二、算法描述

三、计算细节补充

四、算法总结


一、算法介绍

  我们使用Sutherland–Hodgman算法来裁剪多边形的边,一般是给你一个多边形顶点序列(P1,P2,P3,P4,…Pn)让你裁剪,最终裁剪掉裁剪多边形外部部分(下图黑框就是裁剪多边形)。像这样:

裁剪多边形示意图
裁剪多边形示意图

二、算法描述

  首先,我们需要了解多边形的各条边与裁剪线的位置关系,一共只有种:

① 仅输出顶点Pk

② 输出为空

③ 输出交点和Pk

④ 仅输出交点

  每次裁剪完,输出一个顶点序列,作为下一次裁剪的输入。于是我们便可以按照如下顺序,对多边形进行裁剪:

   综上,即可完成对多边形的裁剪。

三、计算细节补充

1、如何判断一个点,在裁剪多边形其中一条线的内部还是外部(可见侧还是不可见侧)

解:设你要拿来判断的裁剪多边形的其中一条线段,它的两个端点坐标分别是(x1,y1),(x2,y2),你要拿来判断的点的坐标为(x,y),则可以通过下列公式判断:

 如果 P < 0,则这个点位于线的右边

 如果 P = 0,则这个点位于线上

 如果 P > 0,则这个点位于线的左边

这个公式的使用前提是,题目给你提供的裁剪多边形的顶点序列是顺时针的,这样的话右边就是内部(可见侧),左边就是外部(不可见侧)

2、如何求得线段与裁剪多边形其中一条线段的交点

解:设线段两个端点为(x1,y1),(x2,y2),裁剪多边形其中一点线段两端点为(x3,y3),(x4,y4),则可以通过以下公式求解:

四、算法总结

代码如下,来源(Polygon Clipping | Sutherland–Hodgman Algorithm - GeeksforGeeks)

// C++ program for implementing Sutherland–Hodgman
// algorithm for polygon clipping
#include<iostream>
using namespace std;

const int MAX_POINTS = 20;

// Returns x-value of point of intersection of two
// lines
int x_intersect(int x1, int y1, int x2, int y2,
				int x3, int y3, int x4, int y4)
{
	int num = (x1*y2 - y1*x2) * (x3-x4) -
			(x1-x2) * (x3*y4 - y3*x4);
	int den = (x1-x2) * (y3-y4) - (y1-y2) * (x3-x4);
	return num/den;
}

// Returns y-value of point of intersection of
// two lines
int y_intersect(int x1, int y1, int x2, int y2,
				int x3, int y3, int x4, int y4)
{
	int num = (x1*y2 - y1*x2) * (y3-y4) -
			(y1-y2) * (x3*y4 - y3*x4);
	int den = (x1-x2) * (y3-y4) - (y1-y2) * (x3-x4);
	return num/den;
}

// This functions clips all the edges w.r.t one clip
// edge of clipping area
void clip(int poly_points[][2], int &poly_size,
		int x1, int y1, int x2, int y2)
{
	int new_points[MAX_POINTS][2], new_poly_size = 0;

	// (ix,iy),(kx,ky) are the co-ordinate values of
	// the points
	for (int i = 0; i < poly_size; i++)
	{
		// i and k form a line in polygon
		int k = (i+1) % poly_size;
		int ix = poly_points[i][0], iy = poly_points[i][1];
		int kx = poly_points[k][0], ky = poly_points[k][1];

		// Calculating position of first point
		// w.r.t. clipper line
		int i_pos = (x2-x1) * (iy-y1) - (y2-y1) * (ix-x1);

		// Calculating position of second point
		// w.r.t. clipper line
		int k_pos = (x2-x1) * (ky-y1) - (y2-y1) * (kx-x1);

		// Case 1 : When both points are inside
		if (i_pos < 0 && k_pos < 0)
		{
			//Only second point is added
			new_points[new_poly_size][0] = kx;
			new_points[new_poly_size][1] = ky;
			new_poly_size++;
		}

		// Case 2: When only first point is outside
		else if (i_pos >= 0 && k_pos < 0)
		{
			// Point of intersection with edge
			// and the second point is added
			new_points[new_poly_size][0] = x_intersect(x1,
							y1, x2, y2, ix, iy, kx, ky);
			new_points[new_poly_size][1] = y_intersect(x1,
							y1, x2, y2, ix, iy, kx, ky);
			new_poly_size++;

			new_points[new_poly_size][0] = kx;
			new_points[new_poly_size][1] = ky;
			new_poly_size++;
		}

		// Case 3: When only second point is outside
		else if (i_pos < 0 && k_pos >= 0)
		{
			//Only point of intersection with edge is added
			new_points[new_poly_size][0] = x_intersect(x1,
							y1, x2, y2, ix, iy, kx, ky);
			new_points[new_poly_size][1] = y_intersect(x1,
							y1, x2, y2, ix, iy, kx, ky);
			new_poly_size++;
		}

		// Case 4: When both points are outside
		else
		{
			//No points are added
		}
	}

	// Copying new points into original array
	// and changing the no. of vertices
	poly_size = new_poly_size;
	for (int i = 0; i < poly_size; i++)
	{
		poly_points[i][0] = new_points[i][0];
		poly_points[i][1] = new_points[i][1];
	}
}

// Implements Sutherland–Hodgman algorithm
void suthHodgClip(int poly_points[][2], int poly_size,
				int clipper_points[][2], int clipper_size)
{
	//i and k are two consecutive indexes
	for (int i=0; i<clipper_size; i++)
	{
		int k = (i+1) % clipper_size;

		// We pass the current array of vertices, it's size
		// and the end points of the selected clipper line
		clip(poly_points, poly_size, clipper_points[i][0],
			clipper_points[i][1], clipper_points[k][0],
			clipper_points[k][1]);
	}

	// Printing vertices of clipped polygon
	for (int i=0; i < poly_size; i++)
		cout << '(' << poly_points[i][0] <<
				", " << poly_points[i][1] << ") ";
}

//Driver code
int main()
{
	// Defining polygon vertices in clockwise order
	int poly_size = 3;
	int poly_points[20][2] = {{100,150}, {200,250},
							{300,200}};

	// Defining clipper polygon vertices in clockwise order
	// 1st Example with square clipper
	int clipper_size = 4;
	int clipper_points[][2] = {{150,150}, {150,200},
							{200,200}, {200,150} };

	// 2nd Example with triangle clipper
	/*int clipper_size = 3;
	int clipper_points[][2] = {{100,300}, {300,300},
								{200,100}};*/

	//Calling the clipping function
	suthHodgClip(poly_points, poly_size, clipper_points,
				clipper_size);

	return 0;
}

Sutherland–Hodgman算法的缺点:仅适用于凸多边形,对于凹多边形的裁剪将如图所示显示出一条多余的直线。

中间的蓝色线即为多余的直线

  如果想避免此问题,需要使用Weiler-Atherton算法,该算法可以避免残留。 

### 回答1: Sutherland-Hodgman多边形裁剪是一种计算机图形学中的算法,用于将一个多边形裁剪成另一个多边形。该算法的基本思想是将被裁剪的多边形和裁剪多边形分别看作一个点序列,然后通过对这两个点序列进行一系列的操作,得到裁剪后的多边形。这个算法的优点是简单易懂,容易实现,而且可以处理任意形状的多边形。 ### 回答2: Sutherland-Hodgman多边形裁剪算法是计算机图形学中的一种常用算法,主要用于计算两个多边形之间的交集。该算法的思想是利用裁剪窗口将原多边形的某些部分“剪去”,最终得到新的多边形。 具体的实现过程如下: 1. 首先我们需要定义一个裁剪窗口,裁剪窗口是一个矩形,它包含了我们要进行裁剪的多边形。 2. 对于被裁剪的原多边形,按照顺时针或逆时针的方向将所有的顶点按顺序记录下来。 3. 对于原多边形的每一条边,判断它是否与裁剪窗口相交。如果不相交,则将这条边舍去,否则需要确定交点,根据交点分成两段,将新的顶点添加到一个新的多边形顶点集合中。 4. 当遍历完所有的边之后,得到的多边形就是裁剪后的结果。 需要注意的是,裁剪后得到的多边形可能不包含原多边形所有的部分,甚至可能是空的。此外,如果裁剪窗口的形状不是矩形,而是其他形状,那么需要对算法进行适当的修改。 总体来说,Sutherland-Hodgman多边形裁剪算法实现起来较为简单,还可以适用于凸多边形和凹多边形。但是当处理的多边形较为复杂时,可能需要运算较多,效率可能会受到一定的影响。因此,在实际应用中,需要根据具体情况选择不同的算法来进行处理。 ### 回答3: Sutherland-Hodgman多边形裁剪算法是一种常用的二维图形裁剪算法,主要用于将一个多边形裁剪成另一个多边形的部分。 该算法的基本思路是通过对多边形的每个边界进行处理,逐步缩小多边形的范围,最终得到裁剪后的多边形。具体来说,就是将裁剪多边形的边界矩形作为裁剪窗口,并将被裁剪多边形中每条边与窗口的交点计算出来,最终根据交点的位置关系得出裁剪后的多边形。 需要注意的是,该算法的实现需要考虑到多种情况,如多边形与裁剪窗口无交点的情况、多边形的边界被完全包含在裁剪窗口中的情况等等。同时,由于该算法需要对多边形的边界逐个进行处理,因此在多边形较复杂时可能会出现计算量较大的情况。 在实际应用中,Sutherland-Hodgman多边形裁剪算法可以用于图像处理、计算机图形学等领域。例如,在计算机游戏中,玩家角色在不同地形之间的移动通常需要进行多边形裁剪,以保证移动的流畅性。此外,在数字信号处理中也可以使用该算法进行滤波等处理。 总之,Sutherland-Hodgman多边形裁剪算法是一种非常实用的算法,可以满足多种图形处理方面的需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值