Spark环境搭建(standalone和local)

一、准备条件

1.安装包下载

https://archive.apache.org/dist/spark/spark-2.1.1/spark-2.1.1-bin-hadoop2.7.tgz

2. 解压缩

[root@hadoop src]# tar zxvf spark-2.1.1-bin-hadoop2.7.tgz

 3.修改名称

[root@hadoop src]# mv spark-2.1.1-bin-hadoop2.7.tgz spark

4. 配置环境变量

#SPARK_HOME
export SPARK_HOME=/usr/local/src/spark
export PATH=$PATH:$SPARK_HOME/bin:$SPARK_HOME/sbin

二、环境搭建

Standalone模式

(1)伪分布式

1.进入$SPARK_HOME/conf

[root@master ~] cd $SPARK_HOME/conf

2.拷贝spark-env.sh.template并进入

[root@master conf] cp spark-env.sh.template spark-env.sh
[root@master conf] vi spark-env.sh

3.添加以下内容

SPARK_MASTER_HOST=master
SPARK_WORKER_CORES=2 #一个从节点分2个Core
SPARK_WORKER_MEMORY=2g
SPARK_WORKER_INSTANCES=1 #一个woker启动一个示例

---注意:Spark Standalone模式架构与Hadoop HDFS/YARN 类似   1个master 2个Woker

4.启动standalone模式

[root@master sbin] start-master.sh

---注意:Alivee Worker:1 原因是SPARK_WORKER_INSTANCES=1 

4.测试

#测试:一台机器一个节点启动多个worker实例

#1.修改
SPARK_WORKER_INSTANCES=2

#2.启动
[root@master sbin] start-master.sh

(2)全分布式

1.修改spark-env.sh

SPARK_MASTER_HOST=master
SPARK_WORKER_CORES=2 #一个从节点分2个Core
SPARK_WORKER_MEMORY=2g
SPARK_WORKER_INSTANCES=2

 2.拷贝slaves.template

[root@master conf]cp slaves.template slaves

 3.修改Slaves

master:master
slave1:worker
slave2:woker
---注意:把所有的worker节点配置到slaves,若master也想要worker,也可添加入内

4.分发到其他两台机器

[root@master conf]scp -r /usr/local/src/spark slave1:/usr/local/src
[root@master conf]scp -r /usr/local/src/spark slave2:/usr/local/src

5.启动

[root@master conf] spark-shell spark://master:7077

---注意:多次启动拿不到Core,状态为Wating

 Local模式

#1.解压spark
略
#2.配置环境变量
略
#3.直接启动
[root@master ~] spark-shell --master local[2]

Spark-shell帮助手册

[root@CQ-WEB-Centos1 conf]# spark-shell --help
Usage: ./bin/spark-shell [options]

Options:
  --master MASTER_URL         spark://host:port, mesos://host:port, yarn, or local.
  --deploy-mode DEPLOY_MODE   Whether to launch the driver program locally ("client") or
                              on one of the worker machines inside the cluster ("cluster")
                              (Default: client).
  --class CLASS_NAME          Your application's main class (for Java / Scala apps).
  --name NAME                 A name of your application.
  --jars JARS                 Comma-separated list of local jars to include on the driver
                              and executor classpaths.
  --packages                  Comma-separated list of maven coordinates of jars to include
                              on the driver and executor classpaths. Will search the local
                              maven repo, then maven central and any additional remote
                              repositories given by --repositories. The format for the
                              coordinates should be groupId:artifactId:version.
  --exclude-packages          Comma-separated list of groupId:artifactId, to exclude while
                              resolving the dependencies provided in --packages to avoid
                              dependency conflicts.
  --repositories              Comma-separated list of additional remote repositories to
                              search for the maven coordinates given with --packages.
  --py-files PY_FILES         Comma-separated list of .zip, .egg, or .py files to place
                              on the PYTHONPATH for Python apps.
  --files FILES               Comma-separated list of files to be placed in the working
                              directory of each executor.

  --conf PROP=VALUE           Arbitrary Spark configuration property.
  --properties-file FILE      Path to a file from which to load extra properties. If not
                              specified, this will look for conf/spark-defaults.conf.

  --driver-memory MEM         Memory for driver (e.g. 1000M, 2G) (Default: 1024M).
  --driver-java-options       Extra Java options to pass to the driver.
  --driver-library-path       Extra library path entries to pass to the driver.
  --driver-class-path         Extra class path entries to pass to the driver. Note that
                              jars added with --jars are automatically included in the
                              classpath.

  --executor-memory MEM       Memory per executor (e.g. 1000M, 2G) (Default: 1G).

  --proxy-user NAME           User to impersonate when submitting the application.
                              This argument does not work with --principal / --keytab.

  --help, -h                  Show this help message and exit.
  --verbose, -v               Print additional debug output.
  --version,                  Print the version of current Spark.

 Spark standalone with cluster deploy mode only:
  --driver-cores NUM          Cores for driver (Default: 1).

 Spark standalone or Mesos with cluster deploy mode only:
  --supervise                 If given, restarts the driver on failure.
  --kill SUBMISSION_ID        If given, kills the driver specified.
  --status SUBMISSION_ID      If given, requests the status of the driver specified.

 Spark standalone and Mesos only:
  --total-executor-cores NUM  Total cores for all executors.

 Spark standalone and YARN only:
  --executor-cores NUM        Number of cores per executor. (Default: 1 in YARN mode,
                              or all available cores on the worker in standalone mode)

 YARN-only:
  --driver-cores NUM          Number of cores used by the driver, only in cluster mode
                              (Default: 1).
  --queue QUEUE_NAME          The YARN queue to submit to (Default: "default").
  --num-executors NUM         Number of executors to launch (Default: 2).
                              If dynamic allocation is enabled, the initial number of
                              executors will be at least NUM.
  --archives ARCHIVES         Comma separated list of archives to be extracted into the
                              working directory of each executor.
  --principal PRINCIPAL       Principal to be used to login to KDC, while running on
                              secure HDFS.
  --keytab KEYTAB             The full path to the file that contains the keytab for the
                              principal specified above. This keytab will be copied to
                              the node running the Application Master via the Secure
                              Distributed Cache, for renewing the login tickets and the
                              delegation tokens periodically.

 

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值