使用Tensorflow实现LSTM模型预测未来气温
首先本人不是计算机专业,也没有学过算法,对模型只是在会用的阶段,虚心接受大家所有真诚的建议与教导。这里我也是用通俗易懂的语言说一下我的想法,如果有不同意的那就是你对,我多多学习。
数据集我就不提供了,大家可以自己去找,我的格式是这样的globaltem.csv

首先导包
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from keras.layers import Dense, LSTM, Input
from tensorflow.keras.callbacks import EarlyStopping
from tensorflow.keras import optimizers
from keras.models import Model
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
定义一个函数进行数据预处理,因为LSTM是用前x个预测后1个数,所以按此将数据划分为训练集和测试集。然后这里的参数look_back(其他人可能叫timestep)就是用前几个预测后1个,如果timestep过大可能会导致预测结果出现是直线的情况。
这里也可以做数据归一化的处理,直接用MinMaxScaler或者按你自己要的来。

这篇博客介绍了如何使用TensorFlow实现LSTM模型预测未来气温。作者非计算机专业,通过数据预处理、模型定义、训练与测试,展示了预测过程。尽管模型在训练集上表现良好,但预测结果存在局限,可能的原因包括数据量不足、timestep设置不当、LSTM units值过小或全连接层Dense的激活函数选择。
最低0.47元/天 解锁文章
955

被折叠的 条评论
为什么被折叠?



