随机变量及其分布
随机变量
小结:
离散型随机变量
如果一个随机变量取的值是有限个或可列无限多个,就称这个随机变量为离散型随机变量。
例子:
例题:
- 确定X所有可能的取值:
X: 0 、1 、2、 3 、4- 求X取每一个可能值的概率
小结:
0-1分布
注意:
二项分布
引入:
伯努利试验:
二项分布:
以X表示n重伯努利试验中事件A发生的次数,P(A)=p(0<p<1),求X分布律。
定义:
注意:只有参数 n、p给定,例如:n = 3,p = p(A) = 1/4,则 X~b(3,1/4)
0-1分布 和 二项分布 :
例题:
- 按规定,某种型号电子元件的使用寿命超过1500小时的为一级品,已知某一大批产品的一级品率为0.2,现在从中随机地抽查20只。问20只元件中恰有k只(k=0,1,.…,20)为一级品的概率是多少?
解:
- 某人进行射击,设每次射击的命中率为0.02,独立射击400次,试求至少击中两次的概率。
解:
- 设有80台同类型设备,各台工作是相互独立的,发生故障的概率都是0.01,且一台设备的故障能由一个人处理。考虑两种配备维修工人的方法,
其一是由4人维护,每人负责20台;
其二是由3人共同维护80台。
试比较这两种方法在设备发生故障时不能及时维修的概率的大小。
解:
小结:
泊松分布
泊松定理:
例题:
计算机硬件公司制造某种特殊型号的微型芯片,次品率达0.1%,各芯片成为次品相互独立。请用两种方法(二项分布、泊松定理)求在1000只产品中至少有2只次品的概率。以X记产品中的次品数,X~b(1000,0.001)
什么情况二项可以用泊松进行计算??
当 :X~b(n,p) : n >= 20,p <= 0.05时。
小结:
几何分布
例题:
超几何分布
随机变量的分布函数
定义:
几何表示
分布函数的性质
- 单调性:
- 有界性、极限性:
3. 连续性:
例题:
连续型随机变量
概率密度
性质:
- f(X) >= 0
四个特性
例题:
均匀分布
例题:
设电阻值R是一个随机变量,均匀分布在900Ω~1100Ω。求R的概率密度,R落在950Ω~~1050Ω的概率,及R落在750Ω~1050Ω的概率。
.
小结:
正态分布
性质:
标准正态分布
正态分布的计算
指数分布
性质:
例: