漫步数理统计七——随机变量(上)

读者可能会有这样的感受,如果样本空间 C 中的元素不是数的话,描述起来非常麻烦,现在我们就形式化一个规则或者一组规则,根据这些规则, C 中的元素 c 可以用数来表示。首先讨论最简单的情况,考虑掷硬币的随机试验,样本空间是C={c:cTcH} T,H 分别表示尾与头。 X 是一个函数,如果c T ,那么X(c)=0,如果 c H,那么 X(c)=1 ,因此 X 是定义在样本空间C上的实值函数,这就让我们从样本空间 C 变换到了实数 D={0,1} 空间,现在我们形式化随机变量与其空间的定义。

1 考虑样本空间为 C 的随机试验,函数 X 给每个元素cC只分配一个数 X(c)=x ,我们称其为随机变量, X 的空间或者值域是实数D={x:x=X(c),cC}的集合。

在我们的讨论中, D 一般是可数集合或者一个实数区间,我们称第一种类型的随机变量为离散随机变量,第二种称为连续随机变量。本篇先讨论离散与连续随机变量的例子,然后再分别详细讨论他们。

随机变量 X 诱导出实数轴R上的新样本空间 D ,那么与事件 B 和概率 P 相似的又是什么呢?

考虑X是一个离散随机变量,且有一个有限的空间 D={d1,,dm} ,这时候有 m 个事件由:

{cC:X(c)=di},i=1,,m

给定,因此,对于随机变量, D 上的 σ 域是由简单事件 d1,,dm ( D 的集(所有子集集合)生成的,令 F 表示这个 σ 域。

从而我们有了一个样本空间与一个事件集,那么概率集合函数呢?对于 F 中的任何事件 B ,我们定义

PX(B)=P[{cC:X(c)B}](1)

我们需要说明 PX 满足概率的三公理。

注意,首先 PX(B)>0 ,其次,因为 X 的定义域是C,所以我们有 PX(D)=P(C)=1 ,因此 PX 满足概率的前两个公理,对第三个公理得证明留给读者。由此可知 PX D 上的概率,我们称 PX 是随机变量 X D上导出的概率。

我们现在简化上面的讨论,因为 F 中的任何事件 B D={d1,,dm}的一个子集, PX 满足

PX(B)=diBP[{cC:X(c)=di}]

因此, PX 完全由函数

pX(di)=PX[{di}],fori=1,,m(2)

函数 pX(di) 称为 X 的概率质量函数,简写为pmf,下面先给出一段批注,然后考虑一个实例。

1 在等式1与2中,根据 PX,pX 中的下标 X 可以看出他们是随机变量导出的概率集合函数与pmf,我们会经常使用这种符号,尤其是讨论多个变量的时候。另一方面,如果随机变量很明显,那么我们就省略不写。

1现在掷两次骰子,令 X 表示两次得到的数字之和,样本空间是C={(i,j):1i,j6},因为骰子每面朝上的概率是相等的,所以 P[(i,j)]=1/36 ,随机变量 X X(i,j)=i+j X 的空间是D=2,,12 X 的pmf为


这里写图片描述

C上的概率空间的 σ 域由 236 个子集组成,( C 中元素子集的个数)但是我们感兴趣的是随机变量 X ,只有11个我们感兴趣的事件;即事件X=k,k=2,,12。为了说明关于 X 的概率计算,假设B1={x:x=7,11},B2={x:x=2,3,12},那么

PX(B1)PX(B2)=xB1pX(x)=636+236=836=xB2pX(x)=136+236+136=436

其中 pX(x) 如表中所示。

对于连续随机变量,考虑下面简单的试验:在区间 (0,1) 上随机选择一个实数,令 X 表示选择的数,此时X的空间是 D=(0,1) ,这不像上面的例子那样可以容易的导出 PX 的概率,但是有一些直观上的概率,例如,因为数是随机选择的,所以我们感觉

PX[(a,b)]=ba,for0<a<b<1

的分配方式比较合理。

对于连续随机变量 X ,我们想要X的概率模型是由区间概率确定的,因此我们取 R 上事件的类别为博莱尔σ B0 ,它是由区间导出的。注意它也包含了离散随机变量。例如,事件 di 可以用取得的交来表示;例如 {di}=n(di(1/n),di]

2 X 是随机变量,那么它的累加分布函数,(cdf)定义为

FX(x)=PX((,x])=P(Xx)(3)

2 回顾一下, P 是样本空间C上的概率,所以等式3中右边的项需要定义,我们定义为

P(Xx)=P({cC:X(c)x})

这是比较方便的缩写形式,我们会经常使用这种写法。

另外, FX(x) 经常称为分布函数 (df) ,然而,我们加上累加,以此来说明 FX(x) 累加了小于等于 x <script type="math/tex" id="MathJax-Element-2340">x</script>的概率。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值