读者可能会有这样的感受,如果样本空间
C
中的元素不是数的话,描述起来非常麻烦,现在我们就形式化一个规则或者一组规则,根据这些规则,
C
中的元素
c
可以用数来表示。首先讨论最简单的情况,考虑掷硬币的随机试验,样本空间是
定义1:
考虑样本空间为
C
的随机试验,函数
X
给每个元素
在我们的讨论中, D 一般是可数集合或者一个实数区间,我们称第一种类型的随机变量为离散随机变量,第二种称为连续随机变量。本篇先讨论离散与连续随机变量的例子,然后再分别详细讨论他们。
随机变量
X
诱导出实数轴
考虑
给定,因此,对于随机变量, D 上的 σ 域是由简单事件 d1,…,dm ( D 的集(所有子集集合)生成的,令 F 表示这个 σ 域。
从而我们有了一个样本空间与一个事件集,那么概率集合函数呢?对于
F
中的任何事件
B
,我们定义
我们需要说明 PX 满足概率的三公理。
注意,首先
PX(B)>0
,其次,因为
X
的定义域是
我们现在简化上面的讨论,因为
F
中的任何事件
B
是
因此,
PX
完全由函数
函数
pX(di)
称为
X
的概率质量函数,简写为
注1: 在等式1与2中,根据 PX,pX 中的下标 X 可以看出他们是随机变量导出的概率集合函数与pmf,我们会经常使用这种符号,尤其是讨论多个变量的时候。另一方面,如果随机变量很明显,那么我们就省略不写。
其中 pX(x) 如表中所示。
对于连续随机变量,考虑下面简单的试验:在区间
(0,1)
上随机选择一个实数,令
X
表示选择的数,此时
的分配方式比较合理。
对于连续随机变量
X
,我们想要
定义2:
令
X
是随机变量,那么它的累加分布函数,
注2:
回顾一下,
P
是样本空间
这是比较方便的缩写形式,我们会经常使用这种写法。
另外, FX(x) 经常称为分布函数 (df) ,然而,我们加上累加,以此来说明 FX(x) 累加了小于等于 x <script type="math/tex" id="MathJax-Element-2340">x</script>的概率。