9、朴素贝叶斯算法

1 贝叶斯公式

1.1 概率

概率可以理解为某一件事情发生的可能性,记为 P ( A ) P(A) P(A).我们可以表示为:

  • 其中 Ω Ω Ω为必然事件
  • 通过这个情况,我们其实可以将 P ( A ) P(A) P(A)修改为 P ( A ∣ Ω ) = p A p Ω P(A| Ω)=\frac{pA}{pΩ} P(A∣Ω)=pΩpA
  • 代表 Ω Ω Ω条件下 A A A发生的概率

联合概率:如果想要求出 A B AB AB两个事情同时发生的概率,就需要计算他们的交集,概率记为 P ( A B ) P(AB) P(AB)

1.2 条件概率

A , B A,B AB为任意两个事件,若 P ( A ) > 0 P(A)>0 P(A)>0,我们称在已知事件 A A A发生的条件下,事件 B B B发生的概率为条件概率,记为 P ( B ∣ A ) P(B|A) P(BA),并定义
P ( B ∣ A ) = P ( A B ) P ( A ) % MathType!MTEF!2!1!+- % feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbWexLMBbXgBd9gzLbvyNv2CaeHbl7mZLdGeaGqiVu0Je9sqqr % pepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs % 0-yqaqpepae9pg0FirpepeKkFr0xfr-xfr-xb9adbaqaceGabiqaci % aabeqaamaabaabauaakeaacaWGqbGaaiikaiaadkeacaGG8bGaamyq % aiaacMcacqGH9aqpdaWcaaqaaiaadcfacaGGOaGaamyqaiaadkeaca % GGPaaabaGaamiuaiaacIcacaWGbbGaaiykaaaaaaa!4BA4! P(B|A) = \frac{ {P(AB)}}{ {P(A)}} P(BA)=P(A)P(AB)

1.3 全概率公式

如果 ⋃ i = 1 n A i = Ω , A i A j = φ ( ∀ i ≠ j ) \bigcup\limits_{i = 1}^n { {A_i}} = \Omega ,{A_i}{A_j} = \varphi (\forall i \neq j ) i=1nAi=Ω,AiAj=φ(i=j) P ( A i ) > 0 P(A_i)>0 P(Ai)>0 ,则对任一事件 B B B,有
P ( B ) = ∑ i = 1 n P ( A i ) P ( B ∣ A i ) P(B) = \sum\limits_{i = 1}^n {P({A_i})P(B|{A_i})} P(B)=i=1nP(Ai)P(BAi)

1.4 贝叶斯公式(逆概率公式)

概率是反映随机事件出现的可能性大小的量度,而条件概率则是给定某事件A的条件下,另一事件B发生的概率。 全概率公式则是利用条件概率,将复杂事件A分割为若干简单事件概率的求和问题。贝叶斯公式则是利用条件概率和全概率公式计算后验概率。

如果 ⋃ i = 1 n A i = Ω , A i A j = φ ( ∀ i ≠ j ) \bigcup\limits_{i = 1}^n { {A_i}} = \Omega ,{A_i}{A_j} = \varphi (\forall i \neq j) i=1nAi=Ω,AiAj=φ(i=j) P ( A i ) > 0 P(A_i)>0 P(Ai)>0 ,则对任一事件 B B B,只要 P ( B ) > 0 P(B)>0 P(B)>0,有
P ( A j ∣ B ) = P ( A j B ) P ( B ) = P ( A j ) P ( B ∣ A j ) ∑ i = 1 n P ( A i ) P ( B ∣ A i ) ( i , j = 1 , 2 , . . . , n ) P\left( { {A_j}|B} \right) = \frac{ {P\left( { {A_j}B} \right)}}{ {P\left( B \right)}} = \frac{ {P\left( { {A_j}} \right)P\left( {B|{A_j}} \right)}}{ {\sum\limits_{i = 1}^n {P\left( { {A_i}} \right)P\left( {B|{A_i}} \right)} }}(i,j = 1,2,...,n) P(AjB)=P(B)P(AjB)=i=1nP(Ai)P(BAi)P(Aj)P(BAj)(i,j=1,2,...,n)

2 朴素贝叶斯算法

朴素贝叶斯算法基于不同的概率估计方法具有不同的形式。概率估计方法有以下两种:

  • 极大似然估计
  • 贝叶斯估计

2.1 定义和推导

我们可以通过贝叶斯公式,可以通过某件事情发生条件,来预测某些条件下,发生这件事情的概率。

  • 输入:训练数据 T = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , . . . , ( x N , y N ) } T=\{(x_1,y_1),(x_2,y_2),...,(x_N,y_N)\} T={(x1,y1),(x2,y2),...,(xN,yN)},其中 x i = ( x i ( 1 ) , x i ( 2 ) , . . . , x i ( n ) ) x_i=(x_i^{(1)},x_i^{(2)},...,x_i^{(n)}) xi=(xi(1),xi(2),...,xi(n)) x i ( j ) x_i^{(j)} xi(j)是第 i i i个样本的第 j j j个特征, x i ( j ) ∈ { a j 1 , a j 2 , . . , a j S j } x_i^{(j)} \in \{ a_{j1},a_{j2},..,a_{jS_j} \} xi(j){ aj1,aj2,..,ajSj} a j l a_{jl} ajl是第 j j j个特征可能取的第 l l l个值, j = 1 , 2 , . . . , n j=1,2,...,n j=1,2,...,n l = 1 , 2 , . . , S j l=1,2,..,S_j l=1,2,..,Sj y i ∈ { c 1 , c 2 , . . . , c K } y_i\in \{c_1,c_2,...,c_K\} yi{ c1,c2,...,cK};实例 x x x
  • 输出:实例 x x x的分类

P ( Y = c k ∣ X = x ) = P ( X = x , Y = c k ) P ( X = x ) = P ( Y = c k ) P ( X = x ∣ Y = c k ) ∑ k = 1 K P ( Y = c k ) P ( X = x ∣ Y = c k ) ( k = 1 , 2 , . . . , K ) P\left( { {Y=c_k}|X=x} \right) = \frac{ {P\left( { {X=x,}Y=c_k} \right)}}{ {P\left( X=x \right)}} = \frac{ {P\left( { {Y=c_k}} \right)P\left( {X=x|{Y=c_k}} \right)}}{ {\sum\limits_{k = 1}^K {P\left( { {Y=c_k}} \right)P\left( { {X=x}|Y=c_k} \right)} }}(k = 1,2,...,K) P(Y=ckX=x)=P(X=x)P(X=x,Y=ck)=k=1KP(Y=ck)P(X=xY=ck)P(Y=ck)P(X=xY=ck)(k=1,2,...,K)

后验概率最大的类别记为预测类别,即: arg ⁡   m a x c k P ( Y = c k ∣ X = x ) \mathop {\arg\ max }\limits_{c_k} P(Y=c_k|X=x) ckarg maxP(Y=ckX=x)

如果将贝叶斯公式的思想使用到机器学习中,效能是不是很大,可以帮助我们去预测类别呢?不可行。因为在显示过程中特征值不只有一个,很难去计算概率,计算复杂度很高

  • 朴素贝叶斯法是基于贝叶斯定理与特征条件 ( x ( 1 ) , x ( 2 ) , . . . , x ( n ) ) (x^{(1)},x^{(2)},...,x^{(n)}) (x(1),x(2),...,x(n))独立假设的分类方法 。最为广泛的两种分类模型是决策树模型(Decision Tree Model)和朴素贝叶斯模型(Naive Bayesian Model,NBM)。
  • 贝叶斯定理是关于随机事件
  • 22
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

healed萌

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值