29、马尔可夫链蒙特卡罗法

马尔可夫链蒙特卡罗法

  • 蒙特卡罗法(Monte Carlo method),也称为统计模拟方法(statistical simulation method),是通过从概率模型随机抽样进行 近似数值计算 的方法
  • 马尔可夫链蒙特卡罗法(Markov Chain Monte Carlo,MCMC),则是以马尔可夫链(Markov chain)为概率模型的蒙特卡罗法
  • 马尔可夫链蒙特卡罗法 构建一个马尔可夫链,使其平稳分布就是要进行抽样的分布,首先基于该马尔可夫链进行随机游走,产生样本的序列,之后使用该平稳分布的样本进行近似数值计算
  • 马尔可夫链蒙特卡罗法被应用于概率分布的估计、定积分的近似计算、最优化问题的近似求解等问题,特别是被应用于统计学习中概率模型的学习与推理,是重要的统计学习计算方法

1 蒙特卡罗法

1.1 随机抽样

统计学和机器学习的目的是基于数据对概率分布的特征进行推断。蒙特卡罗法要解决的问题是,假设概率分布的定义已知,通过抽样获得概率分布的随机样本,并通过得到的随机样本对概率分布的特征进行分析。

核心是随机抽样。一般的蒙特卡罗法有直接抽样法、接受-拒绝抽样法、重要性抽样法。接受-拒绝抽样法、重要性抽样法适合于概率密度函数复杂(如密度函数含有多个变量,各变量相互不独立,密度函数形式复杂),不能直接抽样的情况。

接受-拒绝抽样法:假设有随机变量 x x x,取值 x ∈ X x∈X xX,其概率密度函数为 p ( x ) p(x) p(x)目标是得到该概率分布的随机样本,以对这个概率分布进行分析。基本想法是假设 p ( x ) p(x) p(x)不可以直接抽样,找一个可以直接抽样的分布,称为建议分布;假设 q ( x ) q(x) q(x)是建议分布的概率密度函数,并且有 q ( x ) q(x) q(x) c c c倍一定大于等于 p ( x ) p(x) p(x),其中 c > 0 c>0 c0;按照 q ( x ) q(x) q(x)进行抽样,假设得到结果是 x ∗ x^* x,再按照 p ( x ∗ ) / ( c q ( x ∗ ) ) p(x^*)/(cq(x^*)) p(x)/(cq(x))的比例随机决定是否接受 x ∗ x^* x;直观上,落到 p ( x ∗ ) p(x^*) p(x)范围内的就接受,落到 p ( x ∗ ) p(x^*) p(x)范围外就拒绝。接受-拒绝法实际上是按照 p ( x ) p(x) p(x)的涵盖面积(或涵盖体积)占 c q ( x ) cq(x) cq(x)的涵盖面积(或涵盖体积)的比例进行抽样。优点是容易实现,缺点是效率不高。

在这里插入图片描述

接受-拒绝法具体算法如下:

  • 输入:抽样的目标概率分布的概率密度函数 p ( x ) p(x) p(x);

  • 输出:概率分布的随机样本 x 1 , x 2 , … , x n x_1, x_2,… ,x_n x1,x2,,xn

  • 参数:样本数 n n n

  • (1) 选择概率密度函数为 q ( x ) q(x) q(x) 的概率分布,作为建议分布,使其对任一 x x x 满足 c q ( x ) ≥ p ( x ) cq(x) \geq p(x) cq(x)p(x) , 其中 c > 0 c>0 c>0

  • (2) 按照建议分布 q ( x ) q(x) q(x) 随机抽样得到样本 x ∗ x^* x , 再按照均匀分布在 ( 0 , 1 ) (0 ,1) (0,1) 范围内抽样得到 u u u

  • (3) 如果 u ≤ p ( x ∗ ) c q ( x ∗ ) u \leq \frac{p(x^*)}{cq(x^*)} ucq(x)p(x),则将 x ∗ x^* x作为抽样结果;否则,回到步骤 (2) 。

  • (4) 直至得到 n n n 个随机样本,结束 。

1.2 数字期望值计

一般的蒙特卡罗法,如直接抽样法、接受-拒绝抽样法、重要性抽样法,也可以用于数学期望估计 (estimation of mathematical expectation) 。 假设有随机变量 x x x ,其概率密度函数为 p ( x ) p(x) p(x) f ( x ) f(x) f(x) 为定义的函数,目标是求函数 f ( x ) f(x) f(x)关于密度函数 p ( x ) p(x) p(x) 的数学期望 E p ( x ) [ f ( x ) ] E_{p(x)} [f(x)] Ep(x)[f(x)]

n n n足够大时有:
E p ( x ) [ f ( x ) ] ≈ 1 n ∑ i = 1 n f ( x i ) E_{p(x)} [f(x)]\thickapprox \frac{1}{n}\sum_{i=1}^nf(x_i) Ep(x)[f(x)]n1i=1nf(xi)

1.3 积分计算

一般的蒙特卡罗法也可以用于定积分的近似计算,称为蒙特卡罗积分 (MonteCarlo integration) 。 假设有一个函数 h ( x ) h(x) h(x) , 如果能够将函数 h ( x ) h(x) h(x) 分解成一个函数 f ( x ) f(x) f(x) 和一个概率密度函数 p ( x ) p(x) p(x) 的乘积的形式,那么就有
∫ χ h ( x ) d x = ∫ χ f ( x ) p ( x ) d x = E p ( x ) [ f ( x ) ] ≈ 1 n ∑ i = 1 n f ( x i ) \int_{\chi}h(x)dx=\int_{\chi}f(x)p(x)dx=E_{p(x)} [f(x)]\thickapprox \frac{1}{n}\sum_{i=1}^nf(x_i) χh(x)dx=χf(x)p(x)dx=Ep(x)[f(x)]n1i=1nf(xi)

2 马尔可夫链

2.1 基本定义

马尔可夫链:考虑一个随机变量的序列 X = { X 0 , X 1 , . . . , X t , . . . } X=\{X_0,X_1,...,X_t,...\} X={X0,X1,...,Xt,...} ,这里 X t X_t Xt 表示时刻 t t t的随机变量, t = 0 , 1 , 2 , . . . t=0,1,2,... t=0,1,2,...。每个随机变量 X t ( t = 0 , 1 , 2 , . . . ) X_t(t=0,1,2,...) Xt(t=0,1,2,...) 的取值集合是相同的,称为状态空间,表示为 S S S。随机变量可以是离散的,也可以是连续的。以上随机变量的序列构成随机过程。

假设在时刻 0 0 0的随机变量 X 0 X_0 X0 遵循概率分布 P ( X 0 ) = π 0 P(X_0)=\pi_0 P(X0)=π0 ,称为初始状态分布。在某个时刻 t ≥ 1 t≥1 t1 的随机变量 X t X_t Xt 与前一个时刻的随机变量 X t − 1 X_{t−1} Xt1 之间有条件分布 P ( X t ∣ X t − 1 ) P(X_t|X_{t−1}) P(XtXt1) ,如果 X t X_t Xt 只依赖于 X t − 1 X_{t−1} Xt1,而不依赖于过去的随机变量 { X 0 , X 1 , . . . , X t − 2 } \{X_0,X_1,...,X_{t−2}\} {X0,X1,...,Xt2} ,这一性质称为马尔可夫性,即 P ( X t ∣ X 0 , X 1 , . . . , X t − 1 ) = P ( X t ∣ X t − 1 ) , t = 1 , 2 , . . . P({X_t|X_0,X_1,...,X_{t−1}})=P({X_t|X_{t−1}}),t=1,2,... P(XtX0,X1,...,Xt1)=P(XtXt1),t=1,2,... 。具有马尔可夫性的随机序列 X = { X 0 , X 1 , . . . , X t , . . . } X=\{X_0,X_1,...,X_t,...\} X={X0,X1,...,Xt,...}称为马尔可夫链,或马尔可夫过程。条件概率分布 P ( X t ∣ X t − 1 ) P({X_t|X_{t−1}}) P(XtXt1) 称为马尔可夫链的转移概率分布。转移概率分布决定了马尔可夫链的特性。直观解释为未来只依赖于现在(假设现在已知),而与过去无关

平稳分布:设有马尔可夫链 X = { X 0 , X 1 , . . . , X t , . . . } X=\{X_0,X_1,...,X_t,...\} X={X0,X1,...,Xt,...},其状态空间为 S S S,转移概率矩阵 P = ( p i j ) P=(p_{ij}) P=(pij),如果在状态空间 S S S上的一个分布 π = [ π 1   π 2 . . . ] \pi = \left[ \begin{matrix} \pi_1 \\\ \pi_2 \\...\end{matrix}\right] π= π1 π2... 使得 π = P π \pi=P\pi π=Pπ,则称 π \pi π为马尔可夫链 X = { X 0 , X 1 , . . . , X t , . . . } X=\{X_0,X_1,...,X_t,...\} X={X0,X1,...,Xt,...}的平稳分布。

2.2 马尔可夫链的性质

马尔可夫链的性质

  • 不可约

    设有马尔可夫链 X = { X 0 , X 1 , . . . , X t , . . . } X=\{X_0,X_1,...,X_t,...\} X={X0,X1,...,Xt,...},其状态空间为 S S S,对于任意状态 i , j ∈ S i,j \in S i,jS,如果存在一个时刻 t ( t > 0 ) t(t>0) t(t>0)满足 P ( X t = i ∣ X 0 = j ) > 0 P(X_t=i|X_0=j)>0 P(Xt=iX0=j)>0,也就是说,时刻 0 0 0 从状态 j j j 出发,时刻 t t t 到达状态 i i i 的概率大于 0 ,则称此马尔可夫链 X X X不可约的( irreducible ) ,否则称马尔可夫链是可约的( reducible )。

    一个不可约的马尔可夫链,从任意状态出发,当经过充分长时间后,可以到达任意状态。

  • 非周期

    设有马尔可夫链 X = { X 0 , X 1 , . . . , X t , . . . } X=\{X_0,X_1,...,X_t,...\} X={X0,X1,...,Xt,...},其状态空间为 S S S,对于任意状态 i ∈ S i \in S iS,如果时刻 0 0 0 从状态 i i i 出发, t t t 时刻返回状态 i i i 的所有时间长 { t : P ( X t = i ∣ X 0 = i ) > 0 } \{t:P(X_t=i|X_0=i)>0\} {t:P(Xt=iX0=i)>0}的最大公约数是 1 , 则称此马尔可夫链 X X X非周期的( aperiodic ) ,否则称马尔可夫链是周期的 (periodic) 。

    一个非周期性的马尔可夫链,不存在一个状态,从这一个状态出发,再返回到这个状态时所经历的时间长呈一定的周期性。

  • 正常返

    设有马尔可夫链 X = { X 0 , X 1 , . . . , X t , . . . } X=\{X_0,X_1,...,X_t,...\} X={X0,X1,...,Xt,...},其状态空间为 S S S,对于任意状态 i , j ∈ S i,j \in S i,jS,定义概率 p i j t p_{ij}^t pijt为时刻0从状态 j j j出发,时刻 t t t首次转移到状态 i i i的概率,即 p i j t = P ( X t = i , X s ≠ i , s = 1 , 2 , . . . , t − 1 ∣ X 0 = j ) , t = 1 , 2 , . . . , p_{ij}^t=P(X_t=i,X_s \neq i,s=1,2,...,t-1|X_0=j),t=1,2,..., pijt=P(Xt=i,Xs=i,s=1,2,...,t1∣X0=j),t=1,2,...,,对所有状态 i , j ∈ S i,j \in S i,jS都满足 lim ⁡ t → ∞ > 0 \lim \limits_{t \rightarrow ∞}>0 tlim>0 ,则称马尔可夫链 X X X正常返

    一个正常返的马尔可夫链,其中任意一个状态,从其他任意一个状态出发,当时间趋于无穷时,首次转移到这个状态的概率不为0。

    定理:不可约、非周期且正常返的马尔可夫链,有唯一平稳分布存在。

  • 遍历定理

    设有马尔可夫链 X = { X 0 , X 1 , . . . , X t , . . . } X=\{X_0,X_1,...,X_t,...\} X={X0,X1,...,Xt,...},其状态空间为 S S S,若马尔可夫链 X X X 是不可约、非周期且正常返的,则该马尔可夫链有唯一平稳分布 π = ( π 1 , π 2 , . . . , ) T \pi = (\pi_1,\pi_2,...,)^T π=(π1,π2,...,)T,并且转移概率的极限分布是马尔可夫链的平稳分布
    lim ⁡ t → ∞ P ( X t = i ∣ X 0 ) = π i , i = 1 , 2 , . . . , j = 1 , 2 , . . . \lim \limits_{t \rightarrow ∞}P(X_t=i|X_0)=\pi_i,i=1,2,...,j=1,2,... tlimP(Xt=iX0)=πi,i=1,2,...,j=1,2,...
    f ( X ) f(X) f(X)是定义在状态空间上的函数, E π [ ∣ f ( X ) ∣ ] < ∞ E_{\pi}[|f(X)|]<∞ Eπ[f(X)]<,则
    P ( f ^ t → E π [ f ( X ) ] ) = 1 P(\hat{f}_t \rightarrow E_{\pi}[f(X)])=1 P(f^tEπ[f(X)])=1
    ,其中 f ^ t = 1 t ∑ s = 1 t f ( x s ) \hat{f}_t=\frac{1}{t}\sum_{s=1}^tf(x_s) f^t=t1s=1tf(xs) E π [ f ( X ) ] = ∑ i f ( i ) π i E_{\pi}[f(X)]=\sum_if(i) \pi_i Eπ[f(X)]=if(i)πi f ( X ) f(X) f(X)关于平稳分布 π = ( π 1 , π 2 , . . . , ) T \pi = (\pi_1,\pi_2,...,)^T π=(π1,π2,...,)T的的数学期望,上式表示 f ^ t → E π [ f ( X ) ] , t → ∞ \hat{f}_t \rightarrow E_{\pi}[f(X)],t \rightarrow ∞ f^tEπ[f(X)],t几乎处处成立或以概率 1 成立。

    遍历定理的直观解释:满足相应条件的马尔可夫链,当时间趋于无穷时,马尔可夫链的状态分布趋近于平稳分布,随机变量的函数的样本均值以概率1收敛于该函数的数学期望,样本均值可以认为是时间均值,而数学期望是空间均值。遍历定理实际表述了遍历性的含义:当时间趋于无穷时,时间均值等于空间均值。遍历定理的三个条件:不可约、非周期、正常返,保证了当时间趋于无穷时达到任意一个状态的概率不为 0 。

    理论上并不知道经过多少次迭代,马尔可夫链的状态分布才能接近于平稳分布, 在实际应用遍历定理时,取一个足够大的整数 m m m,经过 m m m 次迭代之后认为状态分布就是平稳分布,这时计算从第 m + 1 m+1 m+1 次迭代到第 n n n 次迭代的均值,即 E ^ f = 1 n − m ∑ i = m + 1 n f ( x i ) \hat{E}f=\frac{1}{n-m}\sum_{i=m+1}^nf(x_i) E^f=nm1i=m+1nf(xi) 称为遍历均值。

  • 可逆马尔可夫链

    设有马尔可夫链 X = { X 0 , X 1 , . . . , X t , . . . } X=\{X_0,X_1,...,X_t,...\} X={X0,X1,...,Xt,...},其状态空间为 S S S,庄毅概率矩阵为 P P P,如果有状态分布 π = ( π 1 , π 2 , . . . , ) T \pi = (\pi_1,\pi_2,...,)^T π=(π1,π2,...,)T,对于任意状态 i , j ∈ S i,j \in S i,jS,对任意一个时刻 t t t满足 p j i π j = p i j π i , i , j = 1 , 2 , . . . p_{ji}\pi_j=p_{ij}\pi_i,i,j=1,2,... pjiπj=pijπi,i,j=1,2,...则称此马尔可夫链 X X X 为可逆马尔可夫链 ,式 上式称为
    细致平衡方程。

    如果有可逆的马尔可夫链,那么以该马尔可夫链的平稳分布作为初始分布,进行随机状态转移,无论是面向未来还是面向过去,任何一个时刻的状态分布都是该平稳分布

3 马尔科夫链蒙特卡罗法

马尔可夫链蒙特卡罗法是以马尔可夫链为概率模型的蒙特卡罗法,它构建一个马尔可夫链,使其平稳分布就是要进行抽样的分布,首先基于该马尔可夫链进行随机游走,产生样本的序列,之后使用该平稳分布的样本进行近似数值计算。

马尔可夫链蒙特卡罗法的假设目标是对一个概率分布进行随机抽样,或者是求函数关于该概率分布的数学期望。可以采用传统的蒙特卡罗法,如接受-拒绝法、重要性抽样法,也可以使用马尔可夫链蒙特卡罗法。马尔可夫链蒙特卡罗法更适用于随机变量是多元的、密度函数是非标准形式的、随机变量各分量不独立等情况。常见的马尔可夫链蒙特卡罗法有Metropolis-Hastings算法、吉布斯抽样。

马尔可夫链蒙特卡罗法基本步骤

  • ①首先,在随机变量 x x x的状态空间 S S S上构造一个满足遍历定理的马尔可夫链,使其平稳分布为目标分布 p ( x ) p(x) p(x)
  • ②从状态空间的某一点 x 0 x_0 x0出发,用构造的马尔可夫链进行随机游走,产生样本序列 x 0 , x 1 , . . . , x t , . . . x_0,x_1,...,x_t,... x0,x1,...,xt,...
  • ③应用马尔可夫链的遍历定理,确定正整数 m m m n ( m < n ) n(m<n) nm<n,得到样本集合 { x m + 1 , x m + 2 , . . . , x n } \{x_{m+1},x_{m+2},...,x_n\} {xm+1,xm+2,...,xn} ,求得函数 f ( x ) f(x) f(x)的均值(遍历均值) E ^ f = 1 n − m ∑ i = m + 1 n f ( x i ) \hat{E}f=\frac{1}{n-m}\sum_{i=m+1}^nf(x_i) E^f=nm1i=m+1nf(xi)就是马尔可夫链蒙特卡罗法的计算公式。

4 Metropolis-Hastings 算法

Metropolis-Hastings算法是最基本的马尔可夫链蒙特卡罗法。

假设目标是对概率分布 p ( x ) p(x) p(x)进行抽样,构造建议分布 q ( x , x ′ ) q(x,x′) q(x,x) ,定义接受分布 α ( x , x ′ ) \alpha(x,x′) α(x,x) 。进行随机游走,假设当前处于状态 x x x,按照建议分布 q ( x , x ′ ) q(x,x′) q(x,x)随机抽样,按照概率 α ( x , x ′ ) \alpha(x,x′) α(x,x) 接受抽样,转移到状态 x ′ x′ x ,按照概率 1 − α ( x , x ′ ) 1−\alpha(x,x′) 1α(x,x) 拒绝抽样,停留在状态 x x x,持续以上操作,得到一系列样本,这样的随机游走是根据转移核为 p ( x , x ′ ) = q ( x , x ′ ) α ( x , x ′ ) p(x,x′)=q(x,x′)\alpha(x,x′) p(x,x)=q(x,x)α(x,x)的可逆马尔可夫链(满足遍历定理条件)进行的,其平稳分布就是要抽样的目标分布 p ( x ) p(x) p(x)

Metropolis-Hastings 算法具体如下:

  • 输入:抽样的目标分布的密度函数 p ( x ) p(x) p(x),函数 f ( x ) f(x) f(x);

  • 输出: p ( x ) p(x) p(x) 的随机样本 x m + 1 , x m + 2 , . . . , x n x_{m+1},x_{m+2},...,x_n xm+1,xm+2,...,xn , 函数样本均值 f m n f_{mn} fmn.

  • 参数:收敛步数 m m m ,是代步数 n n n

  • (1) 任意选择一个初始值 x 0 x_0 x0

  • (2) 对 i = 1 , 2 , … , n i = 1,2,… ,n i=1,2,,n 循环执行

    • (a) 设状态 x i − 1 = x x_{i-1} = x xi1=x , 按照建议分布 q ( x , x ′ ) q(x,x') q(x,x) 随机抽取一个候选状态 x ′ x' x

    • (b) 计算接受概率
      α ( x , x ′ ) = min ⁡ { 1 , p ( x ′ ) q ( x ′ , x ) p ( x ) q ( x , x ′ ) } \alpha(x,x')=\min\left\{1, \frac{p(x')q(x',x)}{p(x)q(x,x')}\right \} α(x,x)=min{1,p(x)q(x,x)p(x)q(x,x)}

    • © 从区间 (0 , 1) 中按均匀分布随机抽取一个数 u u u 。若 u ≤ α ( x , x ′ ) u \leq α (x, x') uα(x,x) , 则状态 x i = x ′ x_i = x' xi=x; 否则,状态 x i = x x_i =x xi=x

  • (3) 得到样本集合 { x m + 1 , x m + 2 , . . . , x n } \{x_{m+1},x_{m+2},...,x_n\} {xm+1,xm+2,...,xn},计算
    f m n = 1 n − m ∑ i = m + 1 n f ( x i ) f_{mn}=\frac{1}{n-m}\sum_{i=m+1}^nf(x_i) fmn=nm1i=m+1nf(xi)

5 吉布斯抽样

吉布斯抽样用于多元联合分布的抽样和估计。吉布斯抽样是单分量Metropolis-Hastings算法的特殊情况。这时建议分布为满条件概率分布 q ( x , x ′ ) = p ( x j ′ ∣ x − j ) q(x,x′)=p(x'_j|x_{−j}) q(x,x)=p(xjxj),吉布斯抽样对每次抽样的结果都接受,没有拒绝,这一点和一般的 Metropolis-Hastings 算法不同。

吉布斯抽样的基本做法是,从联合分布定义满条件概率分布,依次从满条件概率分布进行抽样,得到联合分布的随机样本。假设多元联合概率分布为 p ( x ) = p ( x 1 , x 2 , . . . , x k ) p(x)=p(x_1,x_2,...,x_k) p(x)=p(x1,x2,...,xk) ,吉布斯抽样从一个初始样本 x ( 0 ) = ( x 1 ( 0 ) , x 2 ( 0 ) , . . . , x k ( 0 ) ) T x^{(0)}=(x_1^{(0)},x_2^{(0)},...,x_k^{(0)})^T x(0)=(x1(0),x2(0),...,xk(0))T 出发,不断进行迭代,每一次迭代得到联合分布的一个样本 x ( i ) = ( x 1 ( i ) , x 2 ( i ) , . . . , x k ( i ) ) T x^{(i)}=(x_1^{(i)},x_2^{(i)},...,x_k^{(i)})^T x(i)=(x1(i),x2(i),...,xk(i))T 。在第 i i i次迭代中,依次对第 j j j个变量按照满条件概率分布随机抽样 , p ( x j ∣ x 1 ( i ) , x 2 ( i ) , . . . , x j − 1 ( i ) , x j + 1 ( i − 1 ) , x k ( i − 1 ) ) , j = 1 , 2 , . . . , k p(x_j|x_1^{(i)},x_2^{(i)},...,x_{j-1}{(i)},x_{j+1}{(i-1)} ,x_{k}{(i-1)}) ,j=1,2,...,k p(xjx1(i),x2(i),...,xj1(i),xj+1(i1),xk(i1)),j=1,2,...,k,得到 x j ( i ) x_j^{(i)} xj(i)。最终得到样本序列 { x ( 0 ) , x ( 1 ) , . . . , x ( n ) } \{x^{(0)},x^{(1)},...,x^{(n)}\} {x(0),x(1),...,x(n)}

吉布斯抽样算法具体如下:

  • 输入:抽样的目标分布的密度函数 p ( x ) p(x) p(x),函数 f ( x ) f(x) f(x);

  • 输出: p ( x ) p(x) p(x) 的随机样本 x m + 1 , x m + 2 , . . . , x n x_{m+1},x_{m+2},...,x_n xm+1,xm+2,...,xn , 函数样本均值 f m n f_{mn} fmn.

  • 参数:收敛步数 m m m ,是代步数 n n n

  • (1)初始化。给出初始样本 x ( 0 ) = ( x 1 ( 0 ) , x 2 ( 0 ) , . . . , x k ( 0 ) ) T x^{(0)}=(x_1^{(0)},x_2^{(0)},...,x_k^{(0)})^T x(0)=(x1(0),x2(0),...,xk(0))T

  • (2)对 i i i 进行循环执行。设第 ( i − 1 ) (i-1) (i1)次迭代结束的样本为 x ( i − 1 ) = ( x 1 ( i − 1 ) , x 2 ( i − 1 ) , . . . , x k ( i − 1 ) ) T x^{(i-1)}=(x_1^{(i-1)},x_2^{(i-1)},...,x_k^{(i-1)})^T x(i1)=(x1(i1),x2(i1),...,xk(i1))T,则第 i i i次迭代进行如下几步操作

    • (1) 由满条件分布 p ( x 1 ∣ x 2 ( i − 1 ) , . . . , x k ( i − 1 ) ) p(x_1|x_2^{(i-1)},... ,x_{k}^{(i-1)}) p(x1x2(i1),...,xk(i1))抽取 x 1 ( i ) x_1^{(i)} x1(i)
    • ( j j j) 由满条件分布 p ( x j ∣ x 1 ( i ) , x 2 ( i ) , . . . , x j − 1 ( i ) , x j + 1 ( i − 1 ) , x k ( i − 1 ) ) p(x_j|x_1^{(i)},x_2^{(i)},...,x_{j-1}^{(i)},x_{j+1}^{(i-1)} ,x_{k}^{(i-1)}) p(xjx1(i),x2(i),...,xj1(i),xj+1(i1),xk(i1))抽取 x j ( i ) x_j^{(i)} xj(i)
    • ( k k k) 由满条件分布 p ( x k ∣ x 1 ( i ) , . . . , x k − 1 ( i ) ) p(x_k|x_1^{(i)},... ,x_{k-1}^{(i)}) p(xkx1(i),...,xk1(i))抽取 x k ( i ) x_k^{(i)} xk(i)

    得到第 i i i次迭代值 x ( i ) = ( x 1 ( i ) , x 2 ( i ) , . . . , x k ( i ) ) T x^{(i)}=(x_1^{(i)},x_2^{(i)},...,x_k^{(i)})^T x(i)=(x1(i),x2(i),...,xk(i))T

  • (3) 得到样本集合 { x m + 1 , x m + 2 , . . . , x n } \{x_{m+1},x_{m+2},...,x_n\} {xm+1,xm+2,...,xn}

  • (4) 计算
    f m n = 1 n − m ∑ i = m + 1 n f ( x ( i ) ) f_{mn}=\frac{1}{n-m}\sum_{i=m+1}^nf(x^{(i)}) fmn=nm1i=m+1nf(x(i))

  • 23
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

healed萌

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值