2、多层感知机(MLP)

1 MLP基本结构

最典型的MLP(Multilayer perceptron)包括包括三层输入层、隐层和输出层,MLP神经网络不同层之间是全连接的(全连接的意思就是:上一层的任何一个神经元与下一层的所有神经元都有连接)。

在这里插入图片描述

输入层没什么好说,你输入什么就是什么,比如输入是一个 n x n_{x} nx维向量,就有 n x n_{x} nx个神经元。

隐藏层的神经元怎么得来?首先它与输入层是全连接的,假设输入层用向量 x x x表示,则隐藏层的输出就是

f ( W [ 1 ] T x + b [ 1 ] ) f({W^{[1]}}^Tx+b^{[1]}) f(W[1]Tx+b[1]) W [ 1 ] W^{[1]} W[1]是权重(也叫连接系数), b [ 1 ] b^{[1]} b[1]是偏置,函数 f f f 可以是常用的 s i g m o i d sigmoid sigmoid函数或者 t a n h tanh tanh函数。

s i g m o i d ( a ) = 1 1 + e − a t a n h ( a ) = e a − e − a e a + e − a sigmoid(a)=\frac{1}{1+e^{-a}} \\ tanh(a)=\frac{e^a-e^{-a}}{e^a+e^{-a}} sigmoid(a)=1+ea1tanh(a)=ea+eaeaea
最后就是输出层,输出层与隐藏层是什么关系?其实隐藏层到输出层可以看成是一个多类别的逻辑回归,也即softmax回归,所以输出层的输出就是 s o f t m a x ( W [ 2 ] T a [ 1 ] + b [ 2 ] ) softmax({W^{[2]}}^Ta^{[1]}+b^{[2]}) softmax(W[2]Ta[1]+b[2]) a [ 1 ] a^{[1]} a[1]表示隐藏层的输出 f ( W [ 1 ] T x + b [ 1 ] ) f({W^{[1]}}^Tx+b^{[1]}) f(W[1]Tx+b[1])

MLP整个模型就是这样子的,上面说的这个三层的MLP用公式总结起来就是,函数 G G G s o f t m a x softmax softmax

F ( X ) = G ( b [ 2 ] + W [ 2 ] T ( f ( b [ 1 ] + W [ 1 ] T x ) ) ) F(X)=G(b^{[2]}+{W^{[2]}}^T(f(b^{[1]}+{W^{[1]}}^Tx))) F(X)=G(b[2]+W[2]T(f(b[1]+W[1]Tx)))
由此可知,神经网络主要有三个基本要素:权重、偏置和激活函数

权重:神经元之间的连接强度由权重表示,权重的大小表示可能性的大小。

偏置:偏置的设置是为了正确分类样本,是模型中一个重要的参数,即保证通过输入算出的输出值不能随便激活。

激活函数:起非线性映射的作用,其可将神经元的输出幅度限制在一定范围内,一般限制在(-1~1)或(0~1)之间。最常用的激活函数是 S i g m o i d Sigmoid Sigmoid函数,其可将(-∞,+∞)的数映射到(0~1)的范围内,一般用于二分类。

在这里插入图片描述

​ 激活函数还有tanh和ReLU等函数,tanh是 S i g m o i d Sigmoid Sigmoid函数的变形,tanh的均值是0,在实际应用中有比Sigmoid更好的效果;ReLU是近来比较流行的激活函数,当输入信号小于0时,输出为0;当输入信号大于0时,输出等于输入;具体采用哪种激活函数需视具体情况定。还有leaky ReLU函数,左边不为0,值很小

在这里插入图片描述

为什么使用激活函数?

  • 不使用激活函数,每一层输出都是上层输入的线性函数,无论神经网络有多少层,输出都是输入的线性组合。
  • 使用激活函数,能够给神经元引入非线性因素,使得神经网络可以任意逼近任何非线性函数,这样神经网络就可以利用到更多的非线性模型中。

激活函数需要具备以下几点性质:

  • 连续并可导(允许少数点上不可导)的非线性函数。可导的激活函数可以直接利用数值优化的方法来学习网络参数。
  • 激活函数及其导函数要尽可能的简单,有利于提高网络计算效率。
  • 激活函数的导函数的值域要在一个合适的区间内,不能太大也不能太小,否则会影响训练的效率和稳定性。

因此,MLP所有的参数就是各个层之间的连接权重以及偏置,包括 W [ 1 ] T 、 b [ 1 ] 、 W [ 2 ] T 、 b [ 1 ] {W^{[1]}}^T、b^{[1]}、{W^{[2]}}^T、b^{[1]} W[1]Tb[1]W[2]Tb[1]。对于一个具体的问题,怎么确定这些参数?求解最佳的参数是一个最优化问题,解决最优化问题,最简单的就是梯度下降法了(SGD):首先随机初始化所有参数,然后迭代地训练,不断地计算梯度和更新参数,直到满足某个条件为止(比如误差足够小、迭代次数足够多时)。这个过程涉及到代价函数、规则化(Regularization)、学习速率(learning rate)、梯度计算等。

2 MLP训练过程

  1. 所有边的权重随机分配;

  2. 前向传播:利用训练集中所有样本的输入特征,作为输入层,对于所有训练数据集中的输入,人工神经网络都被激活,然后经过前向传播,得到输出值。

  3. 反向传播:利用输出值和样本值计算总误差,再利用反向传播来更新权重。

  4. 重复步骤2~3, 直到输出误差低于制定的标准。

  5. 上述过程结束后,就得到了一个学习过的MLP网络,该网络被认为是可以接受新输入的。

3 MLP优缺点

MLP优点

  • 高度的并行处理;

  • 高度的非线性全局作用;

  • 良好的容错性;

  • 具有联想记忆功能;

  • 非常强的自适应、自学习功能。

MLP缺点

  • 网络的隐含节点个数选取非常难;

  • 停止阈值、学习率、动量常数需要采用“trial-and-error”法,极其耗时;

  • 学习速度慢;

  • 容易陷入局部极值;

  • 学习可能会不够充分。

4 MLP经典例子(手写数字识别)

4.1 数字识别介绍

MLP的最经典例子就是数字识别,即我们随便给出一张上面写有数字的图片并作为输入,由它最终给出图片上的数字到底是几。

在这里插入图片描述

对于一张写有数字的图片,我们可将其分解为由 28 * 28 = 784 28*28=784 2828784个像素点构成,每个像素点的值在 ( 0 ~ 1 ) (0~1) 01之间,其表示灰度值,值越大该像素点则越亮,越低则越暗,以此表达图片上的数字并将这786个像素点作为神经网络的输入。

而输出则由十个神经元构成,分别表示 ( 0 ~ 9 ) (0~9) 09这十个数字,这十个神经元的值也是在 ( 0 ~ 1 ) (0~1) 01之间,也表示灰度值,但神经元值越大表示从输入经判断后是该数字的可能性越大。

4.2 MLP代码实现

​ 这个代码实现的是一个三层的感知机,但是理解了代码之后,实现n层感知机都不是问题,所以只需理解好这个三层的MLP模型即可。概括地说,MLP的输入层 X X X其实就是我们的训练数据,所以输入层不用实现,剩下的就是“输入层到隐含层”,“隐含层到输出层”这两部分。上面介绍原理时已经说到了,“输入层到隐含层”就是一个全连接层,在下面的代码中我们把这一部分定义为HiddenLayer。“隐含层到输出层”就是一个分类器softmax回归(也有人叫逻辑回归),在下面的代码中我们把这一部分定义为LogisticRegression。

  • 导入必要的python模块

主要是numpy、theano,以及python自带的os、sys、time模块,这些模块的使用在下面的程序中会看到。

import os
import sys
import time
import numpy
import theano
import theano.tensor as T
  • 定义MLP模型(HiddenLayer+LogisticRegression)

这一部分定义MLP的基本“构件”,即上文一直在提的HiddenLayer和LogisticRegression

(1)HiddenLayer

隐含层我们需要定义连接系数W、偏置b,输入、输出,具体的代码以及解读如下:

class HiddenLayer(object):
    def __init__(self, rng, input, n_in, n_out, W=None, b=None,
                 activation=T.tanh):
        """
注释:
这是定义隐藏层的类,首先明确:隐藏层的输入即input,输出即隐藏层的神经元个数。输入层与隐藏层是全连接的。
假设输入是n_in维的向量(也可以说时n_in个神经元),隐藏层有n_out个神经元,则因为是全连接,
一共有n_in*n_out个权重,故W大小时(n_in,n_out),n_in行n_out列,每一列对应隐藏层的每一个神经元的连接权重。
b是偏置,隐藏层有n_out个神经元,故b时n_out维向量。
rng即随机数生成器,numpy.random.RandomState,用于初始化W。
input训练模型所用到的所有输入,并不是MLP的输入层,MLP的输入层的神经元个数时n_in,而这里的参数input大小是
(n_example,n_in),每一行一个样本,即每一行作为MLP的输入层。
activation:激活函数,这里定义为函数tanh
        """
        
        self.input = input   #类HiddenLayer的input即所传递进来的input
 
"""
注释:
代码要兼容GPU,则W、b必须使用 dtype=theano.config.floatX,并且定义为theano.shared
另外,W的初始化有个规则:如果使用tanh函数,则在-sqrt(6./(n_in+n_hidden))到sqrt(6./(n_in+n_hidden))之间均
匀抽取数值来初始化W,若是sigmoid函数,则以上再乘4倍。
"""
#如果W未初始化,则根据上述方法初始化。
#加入这个判断的原因是:有时候我们可以用训练好的参数来初始化W,见我的上一篇文章。
        if W is None:
            W_values = numpy.asarray(
                rng.uniform(
                    low=-numpy.sqrt(6. / (n_in + n_out)),
                    high=numpy.sqrt(6. / (n_in + n_out)),
                    size=(n_in, n_out)
                ),
                dtype=theano.config.floatX # 为了与 theano 设置的浮点数精度保持一致
            )
            if activation == theano.tensor.nnet.sigmoid:
                W_values *= 4
            W = theano.shared(value=W_values, name='W', borrow=True)  # 将变量设置为全局变量,其值可以在多个函数中共用
 
        if b is None:
            b_values = numpy.zeros((n_out,), dtype=theano.config.floatX)
            b = theano.shared(value=b_values, name='b', borrow=True)
 
#用上面定义的W、b来初始化类HiddenLayer的W、b
        self.W = W
        self.b = b
 
#隐含层的输出
        lin_output = T.dot(input, self.W) + self.b
        self.output = (
            lin_output if activation is None
            else activation(lin_output)
        )
 
#隐含层的参数
        self.params = [self.W, self.b]

b. LogisticRegression

逻辑回归(softmax回归),代码详解如下。

(如果你想详细了解softmax回归,可以参考: DeepLearning tutorial(1)Softmax回归原理简介+代码详解

"""
定义分类层,Softmax回归
在deeplearning tutorial中,直接将LogisticRegression视为Softmax,
而我们所认识的二类别的逻辑回归就是当n_out=2时的LogisticRegression
"""
#参数说明:
#input,大小就是(n_example,n_in),其中n_example是一个batch的大小,
#因为我们训练时用的是Minibatch SGD,因此input这样定义
#n_in,即上一层(隐含层)的输出
#n_out,输出的类别数 
class LogisticRegression(object):
    def __init__(self, input, n_in, n_out):
 
#W大小是n_in行n_out列,b为n_out维向量。即:每个输出对应W的一列以及b的一个元素。  
        self.W = theano.shared(
            value=numpy.zeros(
                (n_in, n_out),
                dtype=theano.config.floatX
            ),
            name='W',
            borrow=True
        )
 
        self.b = theano.shared(
            value=numpy.zeros(
                (n_out,),
                dtype=theano.config.floatX
            ),
            name='b',
            borrow=True
        )
 
#input是(n_example,n_in),W是(n_in,n_out),点乘得到(n_example,n_out),加上偏置b,
#再作为T.nnet.softmax的输入,得到p_y_given_x
#故p_y_given_x每一行代表每一个样本被估计为各类别的概率    
#PS:b是n_out维向量,与(n_example,n_out)矩阵相加,内部其实是先复制n_example个b,
#然后(n_example,n_out)矩阵的每一行都加b
        self.p_y_given_x = T.nnet.softmax(T.dot(input, self.W) + self.b)
 
#argmax返回最大值下标,因为本例数据集是MNIST,下标刚好就是类别。axis=1表示按行操作。
        self.y_pred = T.argmax(self.p_y_given_x, axis=1)
 
#params,LogisticRegression的参数     
        self.params = [self.W, self.b]

ok!这两个基本“构件”做好了,现在我们可以将它们“组装”在一起。

我们要三层的MLP,则只需要HiddenLayer+LogisticRegression,

如果要四层的MLP,则为HiddenLayer+HiddenLayer+LogisticRegression…以此类推。

下面是三层的MLP:

#3层的MLP
class MLP(object):
    def __init__(self, rng, input, n_in, n_hidden, n_out):
        
        self.hiddenLayer = HiddenLayer(
            rng=rng,
            input=input,
            n_in=n_in,
            n_out=n_hidden,
            activation=T.tanh
        )
 
#将隐含层hiddenLayer的输出作为分类层logRegressionLayer的输入,这样就把它们连接了
        self.logRegressionLayer = LogisticRegression(
            input=self.hiddenLayer.output,
            n_in=n_hidden,
            n_out=n_out
        )
 
 
#以上已经定义好MLP的基本结构,下面是MLP模型的其他参数或者函数
 
#规则化项:常见的L1、L2_sqr
        self.L1 = (
            abs(self.hiddenLayer.W).sum()
            + abs(self.logRegressionLayer.W).sum()
        )
 
        self.L2_sqr = (
            (self.hiddenLayer.W ** 2).sum()
            + (self.logRegressionLayer.W ** 2).sum()
        )
 
 
#损失函数Nll(也叫代价函数)
        self.negative_log_likelihood = (
            self.logRegressionLayer.negative_log_likelihood
        )
 
#误差      
        self.errors = self.logRegressionLayer.errors
 
#MLP的参数
        self.params = self.hiddenLayer.params + self.logRegressionLayer.params
        # end-snippet-3

MLP类里面除了隐含层和分类层,还定义了损失函数、规则化项,这是在求解优化算法时用到的。

  • 将MLP应用于MNIST(手写数字识别)

    上面定义好了一个三层的MLP,接下来使用它在MNIST数据集上分类,MNIST是一个手写数字0~9的数据集。

    首先定义加载数据 mnist.pkl.gz 的函数load_data():

    """
    加载MNIST数据集
    """
    def load_data(dataset):
        # dataset是数据集的路径,程序首先检测该路径下有没有MNIST数据集,没有的话就下载MNIST数据集
        #这一部分就不解释了,与softmax回归算法无关。
        data_dir, data_file = os.path.split(dataset)
        if data_dir == "" and not os.path.isfile(dataset):
            # Check if dataset is in the data directory.
            new_path = os.path.join(
                os.path.split(__file__)[0],
                "..",
                "data",
                dataset
            )
            if os.path.isfile(new_path) or data_file == 'mnist.pkl.gz':
                dataset = new_path
     
        if (not os.path.isfile(dataset)) and data_file == 'mnist.pkl.gz':
            import urllib
            origin = (
                'http://www.iro.umontreal.ca/~lisa/deep/data/mnist/mnist.pkl.gz'
            )
            print 'Downloading data from %s' % origin
            urllib.urlretrieve(origin, dataset)
     
        print '... loading data'
    #以上是检测并下载数据集mnist.pkl.gz,不是本文重点。下面才是load_data的开始
        
    #从"mnist.pkl.gz"里加载train_set, valid_set, test_set,它们都是包括label的
    #主要用到python里的gzip.open()函数,以及 cPickle.load()。
    #‘rb’表示以二进制可读的方式打开文件
        f = gzip.open(dataset, 'rb')
        train_set, valid_set, test_set = cPickle.load(f)
        f.close()
       
     
    #将数据设置成shared variables,主要时为了GPU加速,只有shared variables才能存到GPU memory中
    #GPU里数据类型只能是float。而data_y是类别,所以最后又转换为int返回
        def shared_dataset(data_xy, borrow=True):
            data_x, data_y = data_xy
            shared_x = theano.shared(numpy.asarray(data_x,
                                                   dtype=theano.config.floatX),
                                     borrow=borrow)
            shared_y = theano.shared(numpy.asarray(data_y,
                                                   dtype=theano.config.floatX),
                                     borrow=borrow)  # borrow为true时,值计算后可以被覆盖
            return shared_x, T.cast(shared_y, 'int32') # 转换为int32类型
     
     
        test_set_x, test_set_y = shared_dataset(test_set)
        valid_set_x, valid_set_y = shared_dataset(valid_set)
        train_set_x, train_set_y = shared_dataset(train_set)
     
        rval = [(train_set_x, train_set_y), (valid_set_x, valid_set_y),
                (test_set_x, test_set_y)]
        return rval
    

    加载了数据,可以开始训练这个模型了,以下就是主体函数test_mlp(),将MLP用在MNIST上:

    #test_mlp是一个应用实例,用梯度下降来优化MLP,针对MNIST数据集
    def test_mlp(learning_rate=0.01, L1_reg=0.00, L2_reg=0.0001, n_epochs=10,
                 dataset='mnist.pkl.gz', batch_size=20, n_hidden=500):
        """
    注释:
    learning_rate学习速率,梯度前的系数。
    L1_reg、L2_reg:正则化项前的系数,权衡正则化项与Nll项的比重
    代价函数=Nll+L1_reg*L1或者L2_reg*L2_sqr
    n_epochs:迭代的最大次数(即训练步数),用于结束优化过程
    dataset:训练数据的路径
    n_hidden:隐藏层神经元个数
    batch_size=20,即每训练完20个样本才计算梯度并更新参数
       """
     
    #加载数据集,并分为训练集、验证集、测试集。
        datasets = load_data(dataset)
        train_set_x, train_set_y = datasets[0]
        valid_set_x, valid_set_y = datasets[1]
        test_set_x, test_set_y = datasets[2]
     
     
    #shape[0]获得行数,一行代表一个样本,故获取的是样本数,除以batch_size可以得到有多少个batch
        n_train_batches = train_set_x.get_value(borrow=True).shape[0] / batch_size
        n_valid_batches = valid_set_x.get_value(borrow=True).shape[0] / batch_size
        n_test_batches = test_set_x.get_value(borrow=True).shape[0] / batch_size
     
        ######################
        # BUILD ACTUAL MODEL #
        ######################
        print '... building the model'
     
    #index表示batch的下标,标量
    #x表示数据集
    #y表示类别,一维向量
        index = T.lscalar()  
        x = T.matrix('x') 
        y = T.ivector('y')  
                           
     
        rng = numpy.random.RandomState(1234)
    #生成一个MLP,命名为classifier
        classifier = MLP(
            rng=rng,
            input=x,
            n_in=28 * 28,
            n_hidden=n_hidden,
            n_out=10
        )
     
    #代价函数,有规则化项
    #用y来初始化,而其实还有一个隐含的参数x在classifier中
        cost = (
            classifier.negative_log_likelihood(y)
            + L1_reg * classifier.L1
            + L2_reg * classifier.L2_sqr
        )
     
     
    #这里必须说明一下theano的function函数,givens是字典,其中的x、y是key,冒号后面是它们的value。
    #在function被调用时,x、y将被具体地替换为它们的value,而value里的参数index就是inputs=[index]这里给出。
    #下面举个例子:
    #比如test_model(1),首先根据index=1具体化x为test_set_x[1 * batch_size: (1 + 1) * batch_size],
    #具体化y为test_set_y[1 * batch_size: (1 + 1) * batch_size]。然后函数计算outputs=classifier.errors(y),
    #这里面有参数y和隐含的x,所以就将givens里面具体化的x、y传递进去。
        test_model = theano.function(
            inputs=[index],
            outputs=classifier.errors(y),
            givens={
                x: test_set_x[index * batch_size:(index + 1) * batch_size],
                y: test_set_y[index * batch_size:(index + 1) * batch_size]
            }
        )
     
        validate_model = theano.function(
            inputs=[index],
            outputs=classifier.errors(y),
            givens={
                x: valid_set_x[index * batch_size:(index + 1) * batch_size],
                y: valid_set_y[index * batch_size:(index + 1) * batch_size]
            }
        )
     
    #cost函数对各个参数的偏导数值,即梯度,存于gparams
        gparams = [T.grad(cost, param) for param in classifier.params]
        
    #参数更新规则
    #updates[(),(),()....],每个括号里面都是(param, param - learning_rate * gparam),即每个参数以及它的更新公式
        updates = [
            (param, param - learning_rate * gparam)
            for param, gparam in zip(classifier.params, gparams)
        ]
     
        train_model = theano.function(
            inputs=[index],
            outputs=cost,
            updates=updates,
            givens={
                x: train_set_x[index * batch_size: (index + 1) * batch_size],
                y: train_set_y[index * batch_size: (index + 1) * batch_size]
            }
        )
     
     
        ###############
        # 开始训练模型 #
        ###############
        print '... training'
        
     
     
        patience = 10000  
        patience_increase = 2  
    #提高的阈值,在验证误差减小到之前的0.995倍时,会更新best_validation_loss  
        improvement_threshold = 0.995  
    #这样设置validation_frequency可以保证每一次epoch都会在验证集上测试。  
        validation_frequency = min(n_train_batches, patience / 2)
      
     
        best_validation_loss = numpy.inf
        best_iter = 0
        test_score = 0.
        start_time = time.clock()
        
    #epoch即训练步数,每个epoch都会遍历所有训练数据
        epoch = 0
        done_looping = False
     
     
    #下面就是训练过程了,while循环控制的时步数epoch,一个epoch会遍历所有的batch,即所有的图片。
    #for循环是遍历一个个batch,一次一个batch地训练。for循环体里会用train_model(minibatch_index)去训练模型,
    #train_model里面的updatas会更新各个参数。
    #for循环里面会累加训练过的batch数iter,当iter是validation_frequency倍数时则会在验证集上测试,
    #如果验证集的损失this_validation_loss小于之前最佳的损失best_validation_loss,
    #则更新best_validation_loss和best_iter,同时在testset上测试。
    #如果验证集的损失this_validation_loss小于best_validation_loss*improvement_threshold时则更新patience。
    #当达到最大步数n_epoch时,或者patience<iter时,结束训练
        while (epoch < n_epochs) and (not done_looping):
            epoch = epoch + 1
            for minibatch_index in xrange(n_train_batches):#训练时一个batch一个batch进行的
     
                minibatch_avg_cost = train_model(minibatch_index)
                # 已训练过的minibatch数,即迭代次数iter
                iter = (epoch - 1) * n_train_batches + minibatch_index
    #训练过的minibatch数是validation_frequency倍数,则进行交叉验证
                if (iter + 1) % validation_frequency == 0:
                    # compute zero-one loss on validation set
                    validation_losses = [validate_model(i) for i
                                         in xrange(n_valid_batches)]
                    this_validation_loss = numpy.mean(validation_losses)
     
                    print(
                        'epoch %i, minibatch %i/%i, validation error %f %%' %
                        (
                            epoch,
                            minibatch_index + 1,
                            n_train_batches,
                            this_validation_loss * 100.
                        )
                    )
    #当前验证误差比之前的都小,则更新best_validation_loss,以及对应的best_iter,并且在tsetdata上进行test
                    if this_validation_loss < best_validation_loss:
                        if (
                            this_validation_loss < best_validation_loss *
                            improvement_threshold
                        ):
                            patience = max(patience, iter * patience_increase)
     
                        best_validation_loss = this_validation_loss
                        best_iter = iter
     
                        test_losses = [test_model(i) for i
                                       in xrange(n_test_batches)]
                        test_score = numpy.mean(test_losses)
     
                        print(('     epoch %i, minibatch %i/%i, test error of '
                               'best model %f %%') %
                              (epoch, minibatch_index + 1, n_train_batches,
                               test_score * 100.))
    #patience小于等于iter,则终止训练
                if patience <= iter:
                    done_looping = True
                    break
     
        end_time = time.clock()
        print(('Optimization complete. Best validation score of %f %% '
               'obtained at iteration %i, with test performance %f %%') %
              (best_validation_loss * 100., best_iter + 1, test_score * 100.))
        print >> sys.stderr, ('The code for file ' +
                              os.path.split(__file__)[1] +
                              ' ran for %.2fm' % ((end_time - start_time) / 60.))
    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

healed萌

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值