Robust Recovery of Subspace Structures by Low-Rank Representation学习笔记1

一、基础知识:子空间

        子空间定义:设 W 为数域 P 上线性空间 V 的一个非空子集,如果 W 对于 V 中的两种运算(加法、数乘)也构成了数域 P 上的线性空间,称 W 为 V 的线性子空间。充要条件为:

        (1)\, \forall \alpha ,\beta \in W,\, \alpha +\beta \in W

        (2)\, \forall \alpha \in W,\, \forall k\in P,\, k\alpha \in W 

        对于矩阵A,它有四个基础子空间,分别为:列空间(Column Space)、行空间(Row Space)、零空间(Null Space)、左零空间(Left Null Space)。

1.1 列空间(Column Space)

        对矩阵 A 进行一个拆分,表示为 C_{1}\cdots C_{n} 这样 n 个列向量,每个列向量维度为 m 。

        A 的列空间就是:这 n 个 m 维列向量的线性张成空间(Span),记为 Col(A) 或 C(A) 。由于每个列向量都是 m 维的,所以 C(A) 是 R^{m} 的子空间。对于 C(A) 中的任意向量 \overline{x} ,都可以表示为

\overline{x}=A[r_{1}, r_{2}, r_{3},\cdots , r_{n}]^{T}=r_{1}C_{1}+r_{2}C_{2}+r_{3}C_{3}+\cdots +r_{n}C_{n}

1.2 行空间

        同样对矩阵 A 进行一个拆分,表示为 R_{1}\cdots R_{m} 这样 m 个行向量,每个行向量维度为 n 。 

        A 的行空间就是:这 m 个 n 维向量的线性张成空间(Span),记为 Col(A) 或 C(A) 。由于每个列向量都是 n 维的,所以 C(A) 是 R^{m} 的子空间。对于 C(A) 中的任意向量 \overline{​{x}'} ,都可以表示为

\overline{​{x}'}=A^{T}[r_{1}^{'}, r_{2}^{'}, r_{3}^{'}, \cdots, r_{m}^{'}]^{T}=r_{1}^{'}R_{1}+r_{2}^{'}R_{2}+r_{3}^{'}R_{3}+\cdots +r_{m}^{'}R_{m}

        同时有

R(A)=C(A^{T})

1.3 零空间

        所有满足 A\overline{x}=0 的向量 \overline{x} 的集合就称之为矩阵 A 的零空间,记为 Null(A) 或 N(A)。 由于零向量是 n 维的,所以 C(A) 是 R^{m} 的子空间。

        矩阵 A 的各列线性无关时,就只有零向量这个唯一解。

        矩阵 A 的各列线性相关时,那么就有非零解。

1.4 左零空间

        即 A^{T} 的零空间,所有满足 \overline{y}A=0 的向量 \overline{y} 的集合。N(A^{T}) 是 R^{m} 的子空间。

1.5 子空间度量

        子空间的基:R^{m} 中的某子空间 H 的一组基是 H 中的一个线性无关集,它可以生成 H。

        维数(dim): 是针对空间来说的,非零子空间 H 的维数 dim(H) 是 H 的任意一组基的向量个数(线性无关)。

        秩(rank):是针对矩阵来说的,矩阵 A 列空间的维数,也就是矩阵 A 主元列的个数。

 1.6 四大子空间关系

        ① 矩阵 A 的列空间 C(A) 的维数是 r 。

        ② 矩阵 A 的行空间 C(A) 的维数是 r 。

        ③ 零空间 C(A) 的维数是 n-r 。

        ④ 左零空间 N(A^{T}) 的维数是 m-r 。

1.7 子空间的和、交

        定义:设 V_{1}V_{1} 是线性空间 V 的子空间,所谓 V_{1} 与 V_{1} 的和,是指所有能表示成 \alpha _{1}+\alpha _{2}, 而 \alpha _{1}\in V_{1}\alpha _{1}\in V_{1} 的向量组成的子集合,记作 V_{1}+V_{2},即

V_{1}+V_{2}=\left \{ \alpha _{1}+\alpha _{2}|\alpha _{1}\in V_{1}, \, \alpha _{2}\in V_{2} \right \}

        子空间的和也是子空间,即 V_{1}+V_{2} 也是 V 的子空间。

        子空间的交也是子空间,即 V_{1}\cap V_{2} 也是 V 的子空间。

        他们都满足交换律和结合律。

        不讨论子空间的并,是因为两个子空间的并未必是 V 的子空间(不满足加法封闭性)。但是集合间存在一定关系,子空间的交中的向量一定在子空间的并上,子空间的并中的向量一定在子空间的和上,即有如下关系:

V_{1}\cap V_{2}\subseteq V_{1}\cup V_{2}\subseteq V_{1}+V_{2}

1.8 维数公式

dim(V_{1})+dim(V_{2})=dim(V_{1}+V_{2})+dim(V_{1}\cap V_{2})

        如果 n 维线性空间 V 中两个子空间的维数之和大于 n,那么 V_{1}V_{1} 必含有非零的公共向量。

1.9 子空间的直和

        定义:设 V_{1}V_{1} 是线性空间 V 的子空间,如果和 V_{1}+V_{2} 中每个向量 \alpha 的分解式\alpha=\alpha_{1}+\alpha_{2},\ \alpha_{1}\in V_{1},\, \alpha _{2}\in V_{2} 是唯一的,这个和就称为直和,记为V_{1}\bigoplus V_{2}  。

        直和的四个等价条件:

        ① V_{1}+V_{2} 是直和

        ② 0的表示法唯一,即若 0=\alpha _{1}+\alpha _{2},\, \alpha _{1}\in V_{1},\alpha _{2}\in V_{2},则必有\alpha _{1}=\alpha _{2}=0

        ③ V_{1}\cap V_{2}=\left \{ 0 \right \}

        ④ dimV_{1}+dimV_{2}=dim(V_{1}+V_{2})

        两维也可以扩展至 n 维。此处不再赘述。需要注意的一个点是,在多个子空间中,条件三变为 V_{i}\bigcap \sum_{j\neq i}V_{j} ,而不是两两的交只有0。

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值