Robust Recovery of Subspace Structures by Low-Rank Representation学习笔记2

二、基础知识:奇异值分解(SVD)

        核心:将矩阵 M 分解为三个矩阵的乘积形式

M=U\sum V^{T}

        当 M 是2×2的矩阵时,其中 U 和 V 是正交矩阵,对应旋转操作, \sum 是对角矩阵(可能不是方阵),对应拉伸操作,那么对于 M 矩阵代表的线性变化操作,分解后也就是旋转拉伸再旋转。

        继续以2维为例,我们假设 M 是一种线性变换,V 是2维空间上的一组标准正交基 \overrightarrow{v_{1}} ,\overrightarrow{v_{2}} ,经过 M 线性变换后成为了 \sigma _{1}\overrightarrow{u_{1}} ,\sigma _{2}\overrightarrow{u_{2}} ,其中 \overrightarrow{u_{1}}, \overrightarrow{u_{2}} 同样是2维空间上的一组标准正交基,于是有输入关系

V=[\overrightarrow{v_{1}}, \overrightarrow{v_{2}}]

V=[\overrightarrow{v_{1}}, \overrightarrow{v_{2}}]

\sum =\begin{bmatrix} \sigma _{1} &0 \\ 0 & \sigma _{2} \end{bmatrix}

MV=U\sum \Rightarrow M=U\sum V^{T}

        SVD 可以推广到任意大小,如下图所示:

 

        由于中间矩阵的数值从大到小排列,为了压缩的同时减小数据存储量,可以去掉一些奇异值,将其简化为下图: 

         右侧的乘法可以拆解为:

 ↓

         对于 SVD 的求解,证明不再赘述,这里仅给出求解步骤:

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值