BPR:贝叶斯个性化排序推荐

一、问题导入

在很多推荐场景中,我们都是基于现有的用户和商品之间的一些数据,得到用户对所有商品的评分,选择高分的商品推荐给用户,这是矩阵分解之类算法的做法,使用起来也很有效。但是在有些推荐场景中,我们是为了在千万级别的商品中推荐个位数的商品给用户,此时,我们更关心的是用户来说,哪些极少数商品在用户心中有更高的优先级,也就是排序更靠前。也就是说,我们需要一个排序算法,这个算法可以把每个用户对应的所有商品按喜好排序。BPR就是这样的一个我们需要的排序算法。

二、显示反馈与隐式反馈

2.1 显式反馈与隐式反馈基本概念

显式反馈是指:用户明确喜欢和不喜欢的物品。例如:用户对物品的评分,如电影评分。

隐式反馈是指:用户对于浏览过的物品没有明确表示喜欢或厌恶。这种类型数据只能认为全部是正反馈也即喜欢的物品。例如:用户对物品的交互行为,如浏览,购买等,现实中绝大部分数据属于隐式反馈,可以从日志中获取。

2.2 显式反馈与隐式反馈的比较

					表 2-1 显示与隐式反馈的特征

在这里插入图片描述

2.3 隐式反馈数据介绍

2.3.1 隐式反馈数据的特点

隐性反馈数据有诸多弊端,例如不明确,具有噪点数据,但是由于他广泛存在,我们有时甚至只能利用它,所以还是要详细研究一下,通过对隐式反馈的合理降噪以及数据修剪来提升物品推荐的可行度。

显性反馈数据可以看出用户对某一物品的偏好值,例如评分机制,8分和10分的区别,而隐性反馈数据没办法衡量偏好值,只能认为用户浏览同一内容越多,越有可能喜好这个内容,也即置信度越大。

2.3.2 隐式反馈数据的处理方式

在使用隐式反馈的情况下,我们会发现观察到的数据均为正例(因为用户对物品交互过才会被观察到),而那些没有被观察到的数据(即用户还没有产生行为的物品),分为两种情况,一种是用户对该物品确实没有星期(负类),另一种是缺失值(即用户以后可能会产生行为的物品),而在传统的个性化推荐中通常是计算用户u对物品i的个性化分数,然后根据个性化分数进行排序。而其处理数据的方式为把所有观察到的隐式反馈作为正类,而其余数据作为负类。
在这里插入图片描述
在负类被填零的情况下,我们优化目标变成了希望在预测时观测到的数据预测为1,其余的均为0,于是产生的问题是,我们希望模型在以后预测的缺失值,在训练时却都被认为时负类数据。因此这个模型训练的足够好,那么最总都得到的结果就是这些未观察的样本最后预测值都是0.

而针对与BPR算法是根据隐式反馈数据来进行比较的,通过对问题进行贝叶斯分析得到的最大后验概率来对item进行排序,进而产生推荐。

三、BPR算法概述

3.1 BPR算法基本概念

BPR(Bayesian Personalized Ranking),中文名称为贝叶斯个性化排序,是当下推荐系统中常用的一种推荐算法。与其他的基于用户评分矩阵的方法不同的是BPR主要采用用户的隐式反馈(如点击、收藏、加入购物车等),通过对问题进行贝叶斯分析得到的最大后验概率来对item进行排序,进而产生推荐。

不了解贝叶斯算法的朋友可以先看一下另一篇文章:
https://blog.csdn.net/qq_41529692/article/details/84105315
最开始我没学习贝叶斯时候干撸BPR发掘了这篇文章,通俗易懂

3.2 BPR算法相关定义

在这里插入图片描述

既然是基于贝叶斯,那么我们也就有假设,这里的假设有两个:
一是每个用户之间的偏好行为相互独立,即用户u在商品i和j之间的偏好和其他用户无关。
二是同一用户对不同物品的偏序相互独立,也就是用户u在商品i和j之间的偏好和其他的商品无关。
为了便于表述,我们用>u符号表示用户u的偏好,上面的<u,i,j>可以表示为:i>uj。
在BPR中,这个排序关系符号 满足完全性,反对称性和传递性,即对于用户集U和物品集I:
完整性:
在这里插入图片描述

反对称性:
在这里插入图片描述

传递性:
在这里插入图片描述

3.3 BPR建模思路

在BPR算法中,我们将任意用户u对应的物品进行标记,如果用户u在同时有物品i和j的时候对i产生了行为,那么我们就得到了一个三元组<u,i,j>,它表示对用户u来说,i的排序要比j靠前。但是如果一个用户对两个物品同时产生过行为,或者同时没有产生行为,则无法构成偏好对。如果对于用户u来说我们有m组这样的反馈,那么我们就可以得到m组用户u对应的训练样本。可以看到BPR采用了pairwise的方式。

那么如下图所示,基于观察到的数据S构建数据集 D s D_{s} Ds,通过对每个用户,可以构建 I ∗ I I*I II的偏好矩阵。所有用户的偏好对构成了训练集 D s = U ∗ I ∗ I D_{s}=U*I*I Ds=UII

BPR推荐系统会考虑positive value 和negative value,也就说所有item都会被个性化ranking,即使用户对某个item缺失值这个item也能够被ranking,而不是仅仅用negative value代替缺失值。
在这里插入图片描述

同时,BPR也用了和funkSVD类似的矩阵分解模型,这里BPR对于用户集U和物品集I的对应的 U × I U×I U×I的预测排序矩阵 X ‾ \overline{X} X,我们期望得到两个分解后的用户矩阵 W ( ∣ U ∣ × k ) W(|U|×k) W(U×k)和物品矩阵 H ( ∣ I ∣ × k ) H(|I|×k) H(I×k),满足 X ‾ = W H T \overline{X}=WH^{T} X=WHT
这里的k和funkSVD类似,也是自己定义的,一般远远小于 ∣ U ∣ , ∣ I ∣ |U|,|I| U,I
由于BPR是基于用户维度的,所以对于任意一个用户u,对应的任意一个物品i我们期望有: x ‾ u i = w u ∗ h i = ∑ f = 1 k w u f ∗ h i f \overline{x}_{ui}=w_{u}*h_{i}=\sum_{f=1}^{k}w_{uf}*h_{if} xui=wuhi=f=1kwufhif
最终我们的目标,是希望寻找合适的矩阵 W , H W,H W,H,让 X ‾ \overline{X} X X X X最相似。读到这里,也许你会说,这和funkSVD之类的矩阵分解模型没有什么区别啊? 的确,现在还看不出,下面我们来看看BPR的算法优化思路,就会慢慢理解和funkSVD有什么不同了。

四、BPR算法优化

BPR 基于最大后验估计 P ( W , H ∣ > u ) P(W,H|>u) P(W,H>u)来求解模型参数 W , H W,H W,H,这里我们用θ来表示参数 W W W H H H, >u代表用户u对应的所有商品的全序关系,即I-I矩阵,则优化目标是 P ( θ ∣ > u ) P(θ|>u) P(θ>u)。根据贝叶斯公式,我们有: P ( θ ∣ > u ) = P ( > u ∣ θ ) P ( θ ) P ( > u ) P(θ|>u)=\frac{P(>u|θ)P(θ)}{P(>u)} P(θ>u)=P(>u)P(>uθ)P(θ)
注意我们现在明确了算法思路,下一步就是化简公式的右半部分,让我们能简单地求解。

由于我们求解假设了用户的排序和其他用户无关,那么对于任意一个用户u来说, P ( > u ) P(>u) P(>u)对所有的物品一样,所以有: P ( θ ∣ > u ) ∝ P ( > u ∣ θ ) P ( θ ) P(θ|>u)∝P(>u|θ)P(θ) P(θ>u)P(>uθ)P(θ)后验概率正比于似然概率乘上先验概率。

这个优化目标转化为两部分。似然概率 P ( > u ∣ θ ) P(>u|θ) P(>uθ)第一部分和样本数据集D有关,先验概率 P ( θ ) P(θ) P(θ)第二部分和样本数据集D无关。

现在我们简化第一部分。
对于第一部分,
独立性假设
1.每个用户之间的偏好行为相互独立。
2.同一用户对不同物品的偏序相互独立。
所以有: ∏ u ∈ U P ( > u ∣ θ ) = ∏ ( u , i , j ) ∈ ( U × I × I ) P ( i > u j ∣ θ ) δ ( ( u , i , j ) ∈ D ) ( 1 − P ( i > u j ∣ θ ) ) δ ( ( u , j , i ) ∉ D ) ∏_{u∈U}P(>u|θ)=∏_{(u,i,j)∈(U×I×I)}P(i>_uj|θ)^{δ((u,i,j)∈D)}(1−P(i>_uj|θ))^{δ((u,j,i)∉D)} uUP(>uθ)=(u,i,j)(U×I×I)P(i>ujθ)δ((u,i,j)D)(1P(i>ujθ))δ((u,j,i)/D)其中 δ ( b ) = { 0   e l s e 1   i f   b   i s   t u r e δ(b)=\{^{1\ if\ b\ is\ ture}_{0\ else} δ(b)={0 else1 if b is ture
上面的式子类似于极大似然估计,若用户u相比于j来说更偏向i,那么我们就希望 P ( i > u j ∣ θ ) P(i >_u j|θ) P(i>ujθ)出现的概率越大越好。

根据上面讲到的完整性和反对称性,优化目标的第一部分可以简化为: ∏ u ∈ U P ( > u ∣ θ ) = ∏ ( u , i , j ) ∈ D P ( i > u j ∣ θ ) ∏_{u∈U}P(>u|θ)=∏_{(u,i,j)∈D}P(i>_uj|θ) uUP(>uθ)=(u,i,j)DP(i>ujθ)
而对于 P ( i > u j ∣ θ ) P(i>_uj|θ) P(i>ujθ)这个概率,我们可以使用下面这个式子来代替: P ( i > u j ∣ θ ) = σ ( x ‾ u i j ( θ ) ) P(i>_uj|θ)=σ(\overline{x}_{uij}(θ)) P(i>ujθ)=σ(xuij(θ))
其中,σ(x)是sigmoid函数。 σ ( x ) = 1 1 + e − x σ(x)=\frac{1}{1+e^{-x}} σ(x)=1+ex1
σ里面的项我们可以理解为用户u对i和j偏好程度的差异,我们当然希望i和j的差异越大越好,这种差异如何体现,最简单的就是差值: x ‾ u i j ( θ ) = x ‾ u i ( θ ) − x ‾ u j ( θ ) \overline{x}_{uij}(θ)=\overline{x}_{ui}(θ)-\overline{x}_{uj}(θ) xuij(θ)=xui(θ)xuj(θ) x ‾ u i ( θ ) , x ‾ u j ( θ ) \overline{x}_{ui}(θ),\overline{x}_{uj}(θ) xui(θ),xuj(θ)就是我们的矩阵 X ‾ \overline{X} X对应位置的值。这里为了方便,我们不写θ,这样上式可以表示为: x ‾ u i j = x ‾ u i − x ‾ u j \overline{x}_{uij}=\overline{x}_{ui}-\overline{x}_{uj} xuij=xuixuj
最终,我们的第一部分优化目标转化为: ∏ u ∈ U P ( > u ∣ θ ) = ∏ ( u , i , j ) ∈ D σ ( x ‾ u i − x ‾ u j ) ∏_{u∈U}P(>u|θ)=∏_{(u,i,j)∈D}σ(\overline{x}_{ui}−\overline{x}_{uj}) uUP(>uθ)=(u,i,j)Dσ(xuixuj)在这里插入图片描述

对于第二部分 P ( θ ) P(θ) P(θ),原作者大胆使用了贝叶斯假设,即这个概率分布符合正太分布,且对应的均值是0,协方差矩阵是 λ θ I λθI λθI,即 P ( θ ) ∼ N ( 0 , λ θ I ) P(θ)∼N(0,λθI) P(θ)N(0,λθI)原作者为什么这么假设呢?个人觉得还是为了优化方便,因为后面我们做优化时,需要计算 l n P ( θ ) lnP(θ) lnP(θ),而对于上面假设的这个多维正态分布,其对数和 ∣ ∣ θ ∣ ∣ 2 ||θ||^2 θ2成正比。即: l n P ( θ ) = λ ∣ ∣ θ ∣ ∣ 2 lnP(θ)=λ||θ||^2 lnP(θ)=λθ2
下面是式子手写推导
在这里插入图片描述

在这里插入图片描述

最终对于我们的最大对数后验估计函数 l n P ( θ ∣ > u ) ∝ l n P ( > u ∣ θ ) P ( θ ) = l n ∏ ( u , i , j ) ∈ D σ ( x ‾ u i − x ‾ u j ) + l n P ( θ ) = ∑ ( u , i , j ) ∈ D l n σ ( x ‾ u i − x ‾ u j ) + λ ∣ ∣ θ ∣ ∣ 2 lnP(θ|>u)∝lnP(>u|θ)P(θ)=ln∏_{(u,i,j)∈D}σ(\overline{x}_{ui}−\overline{x}_{uj})+lnP(θ)=∑_{(u,i,j)∈D}lnσ(\overline{x}_{ui}−\overline{x}_{uj})+λ||θ||2 lnP(θ>u)lnP(>uθ)P(θ)=ln(u,i,j)Dσ(xuixuj)+lnP(θ)=(u,i,j)Dlnσ(xuixuj)+λθ2这个式子可以用梯度上升法或者牛顿法等方法来优化求解模型参数。如果用梯度上升法,对θ求导,我们有: ∂ l n P ( θ ∣ > u ) ∂ θ ∝ ∑ ( u , i , j ) ∈ D 1 1 + e x ‾ u i − x ‾ u j ∂ ( x ‾ u i − x ‾ u j ) ∂ θ + λ θ \frac{∂lnP(θ|>u)}{∂θ}∝∑_{(u,i,j)∈D}\frac{1}{1+e^{\overline{x}_{ui}−\overline{x}_{uj}}}\frac{∂(\overline{x}_{ui}−\overline{x}_{uj})}{∂θ}+λθ θlnP(θ>u)(u,i,j)D1+exuixuj1θ(xuixuj)+λθ

在这里插入图片描述
在这里插入图片描述

由于 x ‾ u i − x ‾ u j = ∑ f = 1 k w u f h i f − ∑ f = 1 k w u f h j f \overline{x}_{ui}−\overline{x}_{uj}=∑_{f=1}^kw_{uf}h_{if}−∑_{f=1}^kw_{uf}h_{jf} xuixuj=f=1kwufhiff=1kwufhjf这样我们可以求出:
在这里插入图片描述
 有了梯度迭代式子,用梯度上升法求解模型参数就容易了。下面我们归纳下BPR的算法流程。

五. BPR算法流程

面简要总结下BPR的算法训练流程:  
输入:训练集D三元组,梯度步长α, 正则化参数λ,分解矩阵维度k。

输出:模型参数,矩阵 W , H W,H W,H

  1. 随机初始化矩阵W,H
  2. 迭代更新模型参数:
    在这里插入图片描述
    3.如果 W , H W,H W,H收敛,则算法结束,输出 W , H W,H W,H,否则回到步骤2.

当我们拿到 W , H W,H W,H后,就可以计算出每一个用户u对应的任意一个商品的排序分: x ‾ u i = w u ∙ h i \overline{x}_{ui}=w_u∙h_i xui=wuhi,最终选择排序分最高的若干商品输出。

六.BPR小结

BPR是基于矩阵分解的一种排序算法,但是和funkSVD之类的算法比,它不是做全局的评分优化,而是针对每一个用户自己的商品喜好分贝做排序优化。因此在迭代优化的思路上完全不同。同时对于训练集的要求也是不一样的,funkSVD只需要用户物品对应评分数据二元组做训练集,而BPR则需要用户对商品的喜好排序三元组做训练集。

参考文献

https://www.cnblogs.com/pinard/p/9128682.html
https://www.jianshu.com/p/ba1936ee0b69
原论文:
http://yun.baidu.com/share/link?shareid=2431171172&uk=1009675359

  • 6
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值