stan模型

文章考虑用不同相邻的用户和不连续的访问理解用户行为,利用沿轨迹具有自我关注层的所有等级的相对时空信息,提出了一个时空注意力网络(STAN)做下一兴趣点推荐。

我们提出了平衡采样器,并且使用了线性插值技术(公式4)替代空间离散化的分层网格方法,可同时反映连续的空间距离。

贡献点:

1、STAN是兴趣点推荐中的第一个模型,明确地结合了时空相关性来学习非相邻位置和非连续访问之间的规律;

2、用线性插值离散化网格空间,恢复空间距离并反映用户的空间偏好,而不仅仅是聚集邻居;

3、为PIF提出了一个双注意力架构。

模型总共由四个模块组成:嵌入模块,自注意力聚合层,注意力匹配层,平衡采样器。

一.嵌入模块:

1.用户轨迹嵌入层:

        我们用三个独立的嵌入层将用户、地点、时间转换为潜表示。e^{u},e^{l},e^{t}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值