1.摘要
simplex:提出了余弦对比损失(CCL),并将其进一步合并到一个简单的统一CF模型,称为simplex。
许多最近基于GNN的研究对BPR损失进行了实验,并将负采样率设置为一个较小的值(每个正用户采样1或10个负样本一对),这样可以证明他们提出的交互编码器的优越性,但他们忽略了损失函数和负采样在CF模型学习中的重要性。使用BPR损失和较小的负采样率进行训练会导致许多CF模型的效果较差。在本文中,我们表明,选择合适的损失函数和适当数量的负样本比交互编码器起着同等或更重要的作用。
CCL损失通过最大化正用户项目对的余弦相似度来优化嵌入,同时将负用户项目对的相似度最小化到一定的余量。
借鉴了一些已有的研究成果:youtubenet中的平均池化,ACF中的注意力。我们将simplex构建为集成矩阵分解和用户行为建模的统一模型。具体来说,它包括一个行为聚合层(平均池化),从历史交互的项目中获取用户的偏好向量,然后通过加权和与用户嵌入向量融合。simplex通过我们的CCL损失和较大的负采样率进行了优化,它可以作为一个超强的基线模型,并且由高效率而具有巨大的工业应用潜力。
2.相关工作
CF:我们将重点放在隐式CF上,(从隐式反馈数据如点击,访问,购买中学习。)对CF模型学习有重要影响的三个方面:
1.交互编码:学习每个用户和每个项目的嵌入,这些嵌入捕获交互矩阵中反映用户之间行为相似性的协作信号。
2.损失函数:CF常见的损失函数:二元交叉(BCE)和均方误差(MSE)将学