ZUCC_离散数学基础__简单期末复习整理

离散数学基础__简单期末复习整理

文章目录

第一次课

命题逻辑基本概念

命题及其真值

真命题 真值为真的命题

假命题 真值为假的命题

简单命题与复合命题

简单命题 (原子命题):简单陈述句构成的命题

复合命题 由简单命题通过联结词联结而成的陈述句

联结词与复合命题

如果p,则q 称作p与q的蕴涵式,记作p→q p是蕴涵式的前件 q为蕴涵式的后件 →称作蕴涵联结词

p→q的逻辑关系

q为p的必要条件

p为q的充分条件

第二次课

公式的赋值

设p,q, …是出现在公式A中全部的命题变项,给p,q, …指定一组真值,称为对A的一个赋值或解释。

使公式为真的赋值称作成真赋值

使公式为假的赋值称作成假赋值

命题公式的分类

重言式(永真式):无成假赋值的命题公式

矛盾式(永假式):无成真赋值的命题公式

可满足式:非矛盾式的命题公式注意:重言式是可满足式,但反之不真.

第三次课

命题逻辑等值演算

等值演算法
//德摩根律
¬(A∨B)⇔¬A∧¬B
¬(A∧B)⇔¬A∨¬B
//蕴涵等值式
A→B⇔¬A∨B
//假言易位
A→B⇔¬B→¬A

第四次课

推理

推理是从前提推出结论的思维过程,前提是指已知的命题公式,结论是从前提出发应用推理规则推出来的命题公式。前提可以是多个。

定义:

设H1,H2,…,Hn,C是命题公式

若(H1∧H2∧…∧Hn)→C 为重言式 则称C是一组前提H1,H2,…,Hn的有效结论

记作:H1∧H2∧…∧Hn⇒C

推理方法

1.真值表法

2.若H1,H2,…,Hn都为T(True),C也为T(True);

3.若C为F(False) 则H1,H2,…,Hn中至少有一个为假

重言蕴含

定义当且仅当A→B是永真式时,我们称“A重言蕴含B”,并记作A⇒B。

证明重言蕴含A⇒B的证明方法

1、A→B是永真式

2、证明¬B⇒¬A

3、若A为T时,推出B为T或若B为F时,推出A为F则A⇒B。

4、直接用常用蕴含式(p51推理定律)

推理定律——重言蕴涵式

(A→B)∧A⇒B			 //★假言推理
(A→B)∧¬B⇒¬A		 	//★拒取式
(A∨B)∧¬B⇒A			//★析取三段论
(A→B)(B→C)(A→C)	//★假言三段论

第五次课

推理方法

直接证法

PT法则:

P法则:前提在推导过程中引用。

T法则:已经推出的公式在以后的推导过程中可引用。包括TI法则(重言蕴含)和TE法则(等价)。

间接证法
前提证明法:

欲证明 A1,A2, …,Ak→(C→B)

前提:A1,A2, …,Ak

结论:C→B

等价地证明

前提:A1,A2, …,Ak,C

结论:B

归谬法(反证法):

欲证明 A1,A2, …,Ak→ B

前提:A1,A2, …,Ak

结论:B将¬B加入前提,若推出矛盾,则得证推理正确。

第六次课

范式

简单析取式与简单合取式

文字:命题变项及其否定的统称

简单析取式:有限个文字构成的析取式如p,¬q,p∨¬q,p∨q∨r, …

简单合取式:有限个文字构成的合取式如p,¬q,p∧¬q,p∧q∧r, …

析取范式与合取范式

析取范式

有限个简单合取式组成的析取式A1∨A2∨…∨Ar

其中A1,A2,…,Ar是简单合取式

合取范式

有限个简单析取式组成的合取式A1∧A2∧…∧Ar,

其中A1,A2,…,Ar是简单析取式

范式:析取范式与合取范式的统称

范式存在定理

定理任何命题公式都存在着与之等值的析取范式与合取范式

主析取范式

主析取范式:由极小项构成的析取范式

例如,n=3,命题变项为p,q,r时

(¬p∧¬q∧r)∨(¬p∧q∧r)是主析取范式

定理

任何命题公式都存在着与之等值的主析取范式, 并且是唯一的.

求主析取范式的方法

设公式A含命题变项p1,p2,…,pn

(1) 求A的析取范式A′=B1∨B2∨… ∨Bs, 其中Bj是简单合取式j=1,2, … ,s

(2) 若某个Bj既不含pi, 又不含¬pi, 则将Bj展开成Bj⇔Bj∧(pi∨¬pi) ⇔(Bj∧pi)∨(Bj∧¬pi)重复这个过程, 直到所有简单合取式都是长度为n的极小项为止

(3) 消去重复出现的极小项, 即用mi代替mi∨mi

(4) 将极小项按下标从小到大排列

P.S. ∧1 m001 m010… 保证m…为1 记作Σ

求主合取范式的方法

设公式A含命题变项p1,p2,…,pn

(1) 求A的合取范式A′=B1∧B2∧… ∧Bs, 其中Bj是简单析取式j=1,2, … ,s。

(2) 若某个Bj既不含pi, 又不含¬pi, 则将Bj展开成Bj⇔Bj∨(pi∧¬pi) ⇔(Bj∨pi)∧(Bj∨¬pi)重复这个过程, 直到所有简单析取式都是长度为n的极大项为止。

(3) 消去重复出现的极大项, 即用Mi代替Mi∧Mi。

(4) 将极大项按下标从小到大排列。

P.S. ∨0 M001 M010…保证M…为0 记作Π

集合的表示法

主析取范式的用途

求公式的成真赋值和成假赋值

判断公式的类型

判断两个公式是否等值

第3章——一阶逻辑

量词:表示数量的词

全称量词∀:表示任意的,所有的,一切的等

如∀x表示对个体域中所有的x∀x F(x)表示所有的x具有性质F

存在量词∃: 表示存在, 有的, 至少有一个等

如∃x表示在个体域中存在x∃x F(x)表示存在x具有性质F

第1章集合与关系

集合的表示法

列举法

如A={ a, b, c, d}, N={0,1,2,…}

描述法{ x | P(x) }如N={ x | x是自然数}

**集合性质: **

(1)集合中的元素各不相同。如, {1,2,3}={1,1,2,3}

(2)集合中的元素不能重复。

(3) 集合中的元素没有次序。如, {1,2,3}={3,1,2}={1,3,1,2,2}

(4) 集合中的元素也可以是集合。

常用集合

自然数集N, 整数集Z, 正整数集Z+, 有理数集Q, 非零有理数集Q, 实数集R, 非零实数集R, 复数集C, 区间[a,b],(a,b)等**

第八次课

集合的关系

①包含与相等

包含(子集) A⊆B ⇔ ∀x(x∈A→x∈B)

不包含 A⊈B ⇔ ∃x(x∈A∧x∉B)

相等 A=B ⇔ A⊆B∧B⊆A

不相等 A≠B ⇔ A⊈B ∨B⊈A

真包含(真子集) A⊂B ⇔A ⊆B∧A≠B

②空集与全集

空集∅:不含任何元素的集合

全集E:限定所讨论的集合都是E的子集

③幂集

幂集P(A):A的所有子集组成的集合
P ( A ) = x ∣ x ⊆ A P(A) = { x| x⊆A } P(A)=xxA
如果|A| = n,则|P(A)| = 2^n

第九次课

第4章 关系

有序对

定义

由两个元素,如x和y,按照一定的顺序组成的二元组称为有序对,记作<x,y>

笛卡儿积

定义设A, B为集合,A与B 的笛卡儿积记作A×B,A×B = { <x,y> | x∈A ∧y∈B }.

定义 定义域、值域和域

定义域: domR= {x| ∃y(<x,y>∈R) }

值域: ranR= {y| ∃x(<x,y>∈R) }

fldR= domR∪ranR

例R={<a,{b}>,<c,d>,<{a},{d}>,<d,{d}>},

则domR =ranR =fldR = { a, c, {a}, d } {{b}, d, {d}}{ a, c, {a}, d , {b}, {d}}

重要关系

设A为任意集合

1、∅是A上的关系,称为空关系

2、EA, IA分别称为全域关系与恒等关系,
KaTeX parse error: Unexpected character: '' at position 27: …| x∈A ∧y∈A}=A×A̲

I A = < x , x > ∣ x ∈ A IA={<x,x> | x∈A} IA=<x,x>xA

例如, A={1,2}, 则

EA={<1,1>,<1,2>,<2,1>,<2,2>}

IA={<1,1>,<2,2>}

关系的表示

关系矩阵

若A={x1, x2, …, xm},B={y1, y2, …, yn},R是从A到B的关系

R的关系矩阵是布尔矩阵MR= [ rij] m×n, 其中rij= 1⇔< xi, yj> ∈R

第十次课

逆关系

设R为X到Y的二元关系,

R的逆关系记为RC(或R-1),

即: R-1={< y, x>|< x, y> ∈R }

显然,若R⊆A×B,则R-1 ⊆B×A

R与S的复合关系

R∘S= |<x,z> | ∃y(<x,y>∈R∧<y,z>∈S) }

**例R={<1,2>, <2,3>, <1,4>, <2,2>}S={<1,1>, <1,3>, <2,3>, ❤️,2>, ❤️,3>} **

R∘S={<1,3>, <2,2>, <2,3> }

S∘R={<1,2>, <1,4>, ❤️,2>, ❤️,3>}

A上关系的幂运算

定义设R为A上的关系, n为自然数, 则R 的n次幂是

(1) R0 = {<x,x> | x∈A } = IA

(2) Rn+1 = Rn∘R

幂运算的方法

对于集合表示的关系R,计算Rn 就是n 个R 合成. 矩阵表示的关系就是矩阵相乘, 其中相加采用逻辑加

自反性与反自反性

定义

设R为A上的关系,

(1) 若∀x(x∈A→<x,x>∈R), 称R在A上是自反

(2) 若∀x(x∈A→<x,x>∉R), 称R在A上是反自反.

自反:A上的全域关系EA, 恒等关系IA, 小于等于关系LA, 整除关系DA反自反:实数集上的小于关系、幂集上的真包含关系.

通俗解释:

全部包含:自反

全部不包含:反自反

部分包含:既不自反也不反自反

对称性与反对称性

定义设R为A上的关系,

(1) 若∀x∀y(x,y∈A∧<x,y>∈R→<y,x>∈R), 则称R为A上对称的关系.

(2) 若∀x∀y(x,y∈A∧<x,y>∈R∧<y,x>∈R→x=y),

则称R为A上的反对称关系.

实例对称:A上的全域关系EA, 恒等关系IA和空关系∅。反对称:恒等关系IA,空关系是A上的反对称关系。

通俗解释:

对称:在关系R中,若R是对称的,则对于R中任意一个有序对,R中都有与其相反的有序对。

反对称:在关系R中,若R是反对称的,则对于R中的有元素相反对的有序对,他们的两个元素一定相等。

传递性

定义设R为A上的关系

若∀x∀y∀z(x,y,z∈A∧<x,y>∈R∧<y,z>∈R→<x,z>∈R), 则称R是A上的传递关系。

实例:A上的全域关系EA, 恒等关系IA 和空关系∅, 小于等于关系, 小于关系, 整除关系, 包含关系, 真包含关系

通俗解释:

传递性:在关系R中,若R拥有传递关系,则一定存在<x,y>∈R∧<y,z>∈R→<x,z>∈R

第十一次课

等价关系

定义

设R为非空集合上的关系. 如果R是自反的、对称的和传递的, 则称R为A上的等价关系.

设R 是一个等价关系, 若<x,y>∈R, 称x等价于y, 记做x~y.

等价类

定义设R为非空集合A上的等价关系,

∀x∈A,令[x]R = { y | y∈A∧xRy }称[x]R 为x关于R 的等价类, 简称为x 的等价类

商集

定义设R 为非空集合A 上的等价关系,

以R 的所有等价类作为元素的集合称为A关于R 的商集, 记做A/R,

等价关系与划分的一一对应

商集A/R 就是A 的一个划分

不同的商集对应于不同的划分

任给A 的一个划分π, 如下定义A 上的关系R:R ={<x,y> | x,y∈A∧x 与y 在π的同一划分块中}

则R 为A上的等价关系, 且该等价关系确定的商集就是π.

第十二次课

偏序关系

定义

非空集合A上的自反、反对称和传递的关系,称为A上的偏序关系,

记作≼. 设≼为偏序关系,

如果<x, y>∈≼, 则记作x≼y, 读作x“小于或等于”y

偏序集与哈斯图

定义

集合A和A上的偏序关系≼一起叫做偏序集, 记作<A,≼>.

实例:整数集和数的小于等于关系构成偏序集<Z,≤>,幂集P(A)和包含关系构成偏序集<P(A),R⊆>.

哈斯图:每个结点没有环,两个连通的结点之间的序关系通过结点位置的高低表示,位置低的元素的顺序在前具有覆盖关系的两个结点之间连边。

偏序集的特定元素

(【集合论】序关系 ( 偏序关系中八种特殊元素 | ① 最大元 | ② 最小元 | ③ 极大元 | ④ 极小元 | ⑤ 上界 | ⑥ 下界 | ⑦ 最小上界 上确界 | ⑧ 最小下界 下确界 )_韩曙亮的博客-CSDN博客_集合的最大元最小元

图的基本概念

无向图

定义

无向图G=<V,E>,

其中V≠∅称为顶点集,其元素称为顶点或结点;

E是V&V的多重子集,称为边集,其元素称为无向边,简称边.

有时用V(G)和E(G)分别表示V和E

有向图

定义有向图D=<V,E>,

其中V≠∅称为顶点集,其元素称为顶点或结点;

E是V×V的多重子集,称为边集,其元素称为有向边,简称边.

有时用V(D)和E(D)分别表示V和E

有限图:V,E都是有穷集合的图 n阶图:n个顶点的图 零图:E=∅的图 平凡图: 1阶零图

空图:V=∅的图

顶点和边的关联与相邻

设无向图G=<V,E>,ek=(vi, vj)∈E,称vi, vj为ek的端点,ek与vi(vj)关联.

若vi≠vj,则称ek与vi(vj)的关联次数为1; 若vi= vj,则称ek与vi的关联次数为2;

若vi不是边e的端点,则称e与vi的关联次数为0。

设vi,vj∈V,ek,el∈E,若(vi,vj)∈E,则称vi,vj相邻;若ek,el有一个公共端点,则称ek,el相邻。

顶点的度数

设G=<V,E>为无向图,v∈V,

v的度数(度)d(v) :v作为边的端点次数之和

悬挂顶点:度数为1的顶点 悬挂边:与悬挂顶点关联的边

G的最大度∆(G)=max{d(v)|v∈V}

G的最小度δ(G)=min{d(v)|v∈V}

第十三次课

握手定理定理

定理

任何图(无向图和有向图)的所有顶点度数之和都等于边数的2倍。

有向图所有顶点的入度之和等于出度之和等于边数。

推论

任何图(无向图和有向图)都有偶数个奇度顶点

例:在一群人中,有奇数个朋友的人必为偶数个。

简单图

定义

在无向图中,关联同一对顶点的2条或2条以上的边,称为平行边,平行边的条数称为重数。

在有向图中,具有相同始点和终点的2条或2条以上的边称为有向平行边,简称平行边,平行边的条数称为重数。

含平行边的图称为多重图。既无平行边也无环的图称为简单图。

完全图与正则图

无向完全图:

每对顶点之间都仅有一条边的无向简单图.

n阶无向完全图记作Kn,顶点数n

边数m=n(n- 1)/2,∆=δ=n- 1

有向完全图:

每对顶点之间均有两条方向相反的边的有向简单图.

顶点数n,边数m=n(n-1)

∆=δ=2(n- 1)

k-正则图:每个顶点的度数均为k的无向简单图顶点数n,边数m=kn/2

子图

定义设G=<V,E>,G′=<V′,E′>是2个图(同为无向图,或同为有向图),

若V′⊆V且E′⊆E,则称G′为G的子图,G为G′的母图,

记作G′⊆G。若G′⊆G且V′=V,则称G′为G的生成子图。

若V′⊂V或E′⊂E,称G′为G的真子图。

图的同构

定义

若称G1与G2是同构的,记作G1≅G2

则这两个图的节点数相同,各个节点的度数相同,知识节点间有不同的排列组合方式

第十四次课

图的矩阵表示

有向图/无向图 的邻接矩阵

通路与回路

定义

给定图G=<V,E>(无向或有向的)
G 中 顶 点 与 边 的 交 替 序 列 Γ = v 0 e 1 v 1 e 2 . . . e l v l . G中顶点与边的交替序列 Γ=v_0e_1v_1e_2...e_lv_l. GΓ=v0e1v1e2...elvl.

∀ i ( 1 ≤ i ≤ l ) , e i = ( v i − 1 , v i ) ∀_i( 1≤i≤l),e_i=(v_i-1,v_i) i(1il),ei=(vi1,vi)
(对于有向图,ei=<vi−1,vi>),则称Γ为v0到vl的通路

v0和vl分别为通路的起点和终点,l为通路的长度.

又若v0=vl,则称Γ为回路.

若通路(回路)中所有顶点(对于回路,除v0=vl)各异,则称为初级通路或路径(初级回路或圈).

若通路(回路)中所有边各异,则称为简单通路(简单回路),否则称为复杂通路(复杂回路)

无向图的连通性与连通分支

设无向图G=<V,E>,u,v∈V

u与v连通:若u与v之间有通路,规定u与自身总是连通的。

连通图:任意两点都连通的图。平凡图是连通图。

连通关系R={<u,v>|u,v∈V且u与v连通}。R是等价关系。

连通分支:V关于R的等价类的导出子图。

设V/R={V1,V2,…,Vk},G的连通分支为G[V1],G[V2],…,G[Vk]

连通分支数p(G)=k,G是连通图⇔p(G)=1

有向图的连通性及其分类

设有向图D=<V,E>,u,v∈V,

u可达v:u到v有通路.规定u到自身总是可达的.

u与v相互可达:u可达v且v可达u

D弱连通(连通):略去各边的方向所得无向图为连通图

D单向连通:∀u,v∈V,u可达v或v可达u

D强连通:∀u,v∈V,u与v相互可达

无向图的关联矩阵

设无向图G=<V,E>,V={v1,v2, …,vn},E={e1,e2, …,em}.

令mij为vi与ej的关联次数,称(mij)n×m为G的关联矩阵,

记为M(G).mij的可能取值为:0,1,2

无环有向图的关联矩阵

设无环有向图D=<V,E>,V={v1,v2, …,vn},E={e1,e2, …,em}

mij = 0 vivj不相连 mij = 1 vi 为起点 mij=-1 vj为终点

第十五次课

欧拉图

欧拉通路:经过所有顶点且每条边恰好经过一次的通路。

欧拉回路:经过所有顶点且每条边恰好经过一次的回路。

欧拉图:有欧拉回路的图。

判别定理

无向图G具有欧拉回路当且仅当G是连通的且无奇度顶点。

分支:V关于R的等价类的导出子图。**

设V/R={V1,V2,…,Vk},G的连通分支为G[V1],G[V2],…,G[Vk]

连通分支数p(G)=k,G是连通图⇔p(G)=1

有向图的连通性及其分类

设有向图D=<V,E>,u,v∈V,

u可达v:u到v有通路.规定u到自身总是可达的.

u与v相互可达:u可达v且v可达u

D弱连通(连通):略去各边的方向所得无向图为连通图

D单向连通:∀u,v∈V,u可达v或v可达u

D强连通:∀u,v∈V,u与v相互可达

无向图的关联矩阵

设无向图G=<V,E>,V={v1,v2, …,vn},E={e1,e2, …,em}.

令mij为vi与ej的关联次数,称(mij)n×m为G的关联矩阵,

记为M(G).mij的可能取值为:0,1,2

无环有向图的关联矩阵

设无环有向图D=<V,E>,V={v1,v2, …,vn},E={e1,e2, …,em}

mij = 0 vivj不相连 mij = 1 vi 为起点 mij=-1 vj为终点

第十五次课

欧拉图

欧拉通路:经过所有顶点且每条边恰好经过一次的通路。

欧拉回路:经过所有顶点且每条边恰好经过一次的回路。

欧拉图:有欧拉回路的图。

判别定理

无向图G具有欧拉回路当且仅当G是连通的且无奇度顶点。

G具有欧拉通路但无欧拉回路当且仅当G是连通的且恰好有两个奇度顶点。

  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 人工智能导论王万良教授的期末试卷是质量很高的,在考查学生所学知识的同时,也考验了学生的理解和思考能力。试卷包含了选择题、填空题、简答题和编程题等几个部分,涵盖了人工智能领域的基础知识、算法和应用。 选择题部分延续了课堂上的操作习惯,题目难度适中,主要考查了学生对于机器学习等相关领域的基础概念、分类方法以及常见算法的了解和掌握程度。填空题部分则更加注重细节和全面性,需要学生对于各种技术细节和模型的构造及优化比较熟悉。简答题部分是对于学生理解深度学习、迁移学习等热门技术的测试,既考查了学生对于论文的掌握情况,也考察了学生对应用领域和未来发展的一些见解和思考。 最后的编程题主要是考查学生对于工具的使用和算法的掌握,题目不难,但需要一定的思考和实现能力。通过这样的编程题,学生能够更加深入地了解机器学习、深度学习等算法的实际应用,提高实践能力。 总体来说,人工智能导论王万良教授的期末试卷难度适中,涵盖了学生所学知识的各个方面,既考查了学生的基础知识掌握能力,也考察了学生的应用能力和思考能力。这样的期末试卷对于学生的学习和提高是非常有益的。 ### 回答2: 王万良教授的《人工智能导论》是一门旨在介绍人工智能及其应用领域的课程。这门课程覆盖范围广泛,内容丰富。期末试卷主要涵盖了以下几个方面: 第一部分是对人工智能的基本概念及其历史发展进行了提问,包括人工智能的定义、目标、研究方法、应用领域、历史发展等方面。 第二部分主要涉及机器学习的内容。其中包括监督学习、非监督学习和强化学习等几个方面。主要目的是测试学生对机器学习的理解与应用能力。 第三部分是对自然语言处理及其应用进行了提问。主要包括自然语言处理的基本概念、技术、应用领域。针对文本分类、情感分析、问答系统等方面进行了考察。 第四部分是针对计算机视觉的内容进行了提问。主要包括图像识别、物体检测、目标跟踪、图像生成等方面,测试学生对计算机视觉的了解。 总之,该课程内容全面,试卷难度适中,旨在考察学生对人工智能相关知识及其应用能力的理解。通过学习该课程,可一定程度上提高对人工智能的认识,对未来发展趋势有所预判,并为未来的学习和工作打下良好的基础。 ### 回答3: 人工智能导论是一门非常有意义的课程,它对于我们理解和掌握人工智能的相关知识具有极其重要的作用。王万良教授的课堂教学内容深入浅出,涵盖了人工智能的核心内容,为我们提供了丰富的学习资源和实践机会。 在王万良教授的期末试卷中,我们可以看到他对于学生的考察非常严谨和全面,试卷内容既基于理论又涉及实践,旨在检验学生对人工智能本质特征、基本算法以及深度学习实践应用等方面的掌握程度。 通过本次考试,我们深刻理解了人工智能在现代社会中的重要性与应用范围,并且锻炼了自己的思维能力、创新能力和实践能力。同时,我们也清晰地认识到,要成为一个优秀的人工智能从业者,需要不断扩展自己的视野和技能,不断培养自己的适应能力和创新精神。 总之,人工智能导论课程是我们大学生活中一门非常宝贵和实用的课程,让我们深刻领会到了人工智能的巨大潜力和挑战。在今后的学习和工作中,我们将继续发挥所学知识和技能,为推动人工智能的发展和应用做出更大的贡献。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值