离散数学基础版1.0

离散数学基础版1.0

1.集合

1.1集合的定义:

集合的定义有三种:列举法,谓词法,韦恩图法.
“列举法"形如:A={0,1,2,3}
"谓词法"形如:A={ x ∈ \in N|x mod 2=1}
"韦恩图法"形如:在这里插入图片描述
在这里插入图片描述

1.1.2集合的用途:

描述对象,每个对象对应的属性不一样,用不同的集合表示不同的对象,在机器学习中用来做标签。

答:(1).4个元素,分别是0,1,{0,1},{1,2},
(2).优点:一个集合可以储存不同类型的元素(单个字符,一个集合),可以表示一个多属性的对象。
(3).若在程序中使用元组,要增删改的消耗大,所以对于集合的元组元组无法进行写操作,因此不支持append、extend、insert等操作,集合中的每个元组可以读,元组的读取操作(与列表一致,使用索引)

2基数:

2.1基数的定义:

基数表示集合的大小,例如一个集合A的基数表示为|A|,读作cadinalty of A.
在这里插入图片描述

(1).0;空集里面没有元素。
(2).1;该集合有一个元素,该元素是一个空集。

3.笛卡尔积

3.1笛卡尔积的定义:

两个集合X和Y的笛卡尔积,表示为X × \times ×Y,第一个对象是X的成员而第二个对象是Y的所有可能有序对的其中一个成员。

3.2笛卡尔积的表示:

(1).矩阵法:

3.3笛卡尔积的有序性,所以不支持结合律:

有些地方为了说明元素的有序性,笛卡尔积是有序性的,使用<x,y>而不是(x,y);对于表示向量时,表示向量是 ∣ x 1 , . . . , x n ∣ \left |x_{1},...,x_{n} \right | x1,...,xn,而不是 ( x 1 , . . . , x n ) \left (x _{1},...,x_{n} \right ) (x1,...,xn)
笛卡尔积不支持结合律,所以不一定满足(A x B) x C=A x (B x C)
若A = { a },B={b},C={c}:
(1). A × B = { ( a , b ) } A\times B=\left \{ \left ( a,b \right ) \right \} A×B={(a,b)};
(2). ( A × B ) × C = { ( a , b ) , c } \left ( A\times B \right ) \times C=\left \{ \left ( a,b \right ) ,c \right \} (A×B)×C={(a,b),c};
(3). A × ( B × C ) = { a , ( b , c ) } A\times \left ( B\times C \right ) =\left \{ a,\left ( b,c \right ) \right \} A×(B×C)={a,(b,c)};

3.4笛卡尔积对并运算和交运算满足分配律。

4. 数据集

4.1什么是数据集:

若C是基数为3的集合,S为基数为4的集合,W为基数为5的集合,则则几个集合的笛卡尔积后的新集合R的基数为 3 × 4 × 5 = 60 3\times4\times 5=60 3×4×5=60(C,S,W的笛卡尔积元素个数为60),数据集是笛卡尔集中的任意个元素,其大小小于等于笛卡尔积元素个数。

4.2数据集的表示:

在这里插入图片描述

4.3列向量表示一个对象

在机器学习中,通常用一个列向量表示一个对象, 这种情况下, 矩阵表示法中应使用 D = { x 0 , x 1 . . . , x n } D=\left \{x_{0},x_{1}...,x_{n} \right \} D={x0,x1...,xn}即不用使用转置符号。

5.幂集

5.1幂集的概念:

若A为为任意集合,以A的子集为元素所组成的集合,称为A的幂集,例如A={1,2,3},则A的幂集,在这里插入图片描述

6.二元关系

二元关系来描述两个值的关系,例如大小关系是一种二元关系,若第一个值设为X,另一个是Y,(1)当X=Y时,表示的就是二维直角坐标系的表示过45度这条直线,(2)当X<Y时,就是二维直角坐标系中表示过45度这条直线的左上,(3)X>Y时,就是二维直角坐标系中表示过45度这条直线的右下。

6.1关系的拓展:

三元关系,四元关系,…,n元关系,多少“元”表示的有多少个变量,描述的是,这些变量的关系。
例如:一个三元关系: { ( x , y , z ) , x 2 + y 2 + z 2 = 1 } \left \{ \left ( x,y,z \right ) ,x^{2}+y^{2}+z^{2}=1\right \} {(x,y,z),x2+y2+z2=1}

7.函数

函数是为了讨论输入到输出的映射,数学中我们接触到很多函数模型,这里不必多说。
在这里插入图片描述

算,学习器讨论的也是输入到输出的映射,我们通过输入数据,通过关系的映射求得输出数据。

8.元组

8.1元组=对象的类

元组的各个部分,即可以是一个集合,也可以是一个基本元素。
在这里插入图片描述

可以完整的表达,因为“元组=类”,在程序设计中,元组应封装成一个类,不仅能表示实例对象的数据,也能覆盖任何操作。
代码如下:
#include <iostream>
#include <vector>
#include <tuple>
using namespace std;

//描述一个人
void getDescription(string name,int age){
    cout<<name<<"的年龄是:"<<age<<endl;
}

int main()
{
  //一个元组表示一个人
    tuple<string,int,void(*)(string,int)> person("Amy",10,getDescription);
    
 //得到这个元组的数据,操作这个元组的方法
    get<2>(person)(get<0>(person),get<1>(person));

    return 0;
}

打印结果:
在这里插入图片描述
![在这里插入图片描述](https://img-blog.csdnimg.cn/2021050411035099.png
Definition 7:A binary tree is a tuple T b = ( V , r , c ) T_{b}=(V,r,c) Tb=(V,r,c),where V = { v 1 . . . v n } V=\left \{ v_{1}...v_{n} \right \} V={v1...vn} is the value of the node,r is root,c: V ∪ { ϕ } × ∑ ∗ ⟶ V ∪ { ϕ } V\cup \left \{\phi \right \} \times \sum {^{*}} \longrightarrow V\cup \left \{ \phi \right \} V{ϕ}×V{ϕ}satisfying.
在这里插入图片描述
Definition 8 :An undirected weighted graph is a tuple G w = ( V , w ) G_{w}=(V,w) Gw=(V,w),w : V × V − > R + ∪ { 0 } V \times V->\mathbb{R}^{+} \cup \left \{ 0\right \} V×V>R+{0} is the edge weight function,and w ( v i , v j ) = w ( v j , v i ) w(v_{i},v_{j})=w(v_{j},v_{i}) w(vi,vj)=w(vj,vi).
在这里插入图片描述
Definition 9:Let ∑ = { l , r } \sum=\left \{ {l,r} \right \} ={l,r} be the alphbet and ϕ \phi ϕ be a null node. A binary tree is a triple T = ( V , r , c ) , where V = { v 1 . . . v n } V=\left \{ v_{1}...v_{n} \right \} V={v1...vn} is the set of nodes, r ∈ V r {\in}V rV is the root,and we say there is a relationship c,c: V ∪ { ϕ } × ∑ ∗ ⟶ V ∪ { ϕ } V\cup \left \{\phi \right \} \times \sum {^{*}} \longrightarrow V\cup \left \{ \phi \right \} V{ϕ}×V{ϕ}satisfying.
(a). ∀ v ∈ V , ∃ 1 s ∈ ∑ ∗ s t . c ( r , s ) = v \forall v\in V,\exists 1 s\in\sum {^{*}} st.c(r,s)=v vV,1sst.c(r,s)=v
在这里插入图片描述

在这里插入图片描述
Definition 10:A deterministic finite state automata binary tree is a tuple T b = ( ∑ , V , q 0 , T , f ) T_{b}=(\sum,V,q_{0},T,f) Tb=(,V,q0,T,f),where ∑ \sum is {l,r}, V = { v 1 . . . v n } V=\left \{ v_{1}...v_{n} \right \} V={v1...vn} , q 0 q_{0} q0 is the root of binary tree,T is the end node meaning is null,f is the transition function,f: V ∪ { ϕ } × ∑ ∗ ⟶ V ∪ { ϕ } V\cup \left \{\phi \right \} \times \sum {^{*}} \longrightarrow V\cup \left \{ \phi \right \} V{ϕ}×V{ϕ} satisfied .
(a). ∀ v ∈ V , ∃ 1 s ∈ ∑ ∗ s t . f ( r , s ) = v \forall v\in V,\exists 1 s\in\sum {^{*}} st.f(r,s)=v vV,1sst.f(r,s)=v
在这里插入图片描述
Definition 11:The tree is a This is an n-tree,a node of tree can have up to n children.A deterministic finite state automata tree is a tuple T = ( ∑ , V , q 0 , T , f ) T=(\sum,V,q_{0},T,f) T=(,V,q0,T,f),where ∑ \sum ={0,1,…,n-1}, V = { v 1 . . . v n } V=\left \{ v_{1}...v_{n} \right \} V={v1...vn} , q 0 q_{0} q0 is the root of binary tree,T is the end node meaning is null,f is the transition function,f: V ∪ { ϕ } × ∑ ∗ ⟶ V ∪ { ϕ } V\cup \left \{\phi \right \} \times \sum {^{*}} \longrightarrow V\cup \left \{ \phi \right \} V{ϕ}×V{ϕ} satisfied .
(a). ∀ v ∈ V , ∃ 1 s ∈ ∑ ∗ s t . c ( v , s ) = r \forall v\in V,\exists 1 s\in\sum {^{*}} st.c(v,s)=r vV,1sst.c(v,s)=r

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值