从1到n的最小“变形”操作次数

题目描述

对于输入的一个正整数n,我们可以进行下面三种操作:

  • 减1 操作:n :=n-1。
  • 除以2 操作:n := n/2,要求执行前n 是2 的倍数。
  • 除以3 操作:n := n/3,要求执行前n 是3 的倍数。

请计算将n 变为1 最少需要多少个操作。
示例:

输入:17
输出:5

解释:1*2*2*2*2+1=17,总共经过至少5次操作完成从1到17的变换。

思路

方法1:暴力递归
以数组arr[i]表示从1到i的最小“操作数”。利用函数递归,暴力地从1到n列举所有的可能性,更新数组取值,取a[n]即可。

#include <iostream>
using namespace std;
#define MAX 1000000000
class Solution
{
public:
    int minOperations(int n)
    {
        Init(n);
        arr[1] = 0;
        Operate(0, 1); //从1开始进行递归求解,直到n截至
        return arr[n];
    }

private:
    int target;
    int arr[10001];
    void Init(int n) //初始化数组arr和最终“目标”target
    {
        for (int i = 0; i < 10001; i++)
        {
            arr[i] = MAX;
        }
        target = n;
    }

    void Operate(int pre, int cur) //表示由pre到cur可通过“一步”操作得到
    {
        if (cur > target) //如果当前递归到的值大于n,则没有必要继续进行下去了。
            return;
        arr[cur] = min(arr[cur], arr[pre] + 1); //更新当前最小“操作数”

        //递归求解所有可能
        Operate(cur, cur * 3);
        Operate(cur, cur * 2);
        Operate(cur, cur + 1);
    }
};
int main()
{
    Solution s;
    cout << s.minOperations(17) << endl;
}

运行结果:

5

但是上面的做法时间复杂度显然是 O ( n 3 ) O(n^3) O(n3),当数据较大时,时间代价是无法接受的。

方法2:动态规划
假设dp[i]表示从1到n的最小“操作数”,我们显然有如下状态转移方程:
d p [ i ] = { d p [ i − 1 ] + 1 , n ∤ 2 , n ∤ 3 m i n { d p [ i − 1 ] , d p [ i / 2 ] } + 1 , n ∣ 2 , n ∤ 3 m i n { d p [ i − 1 ] , d p [ i / 3 ] } + 1 , n ∤ 2 , n ∣ 3 m i n { d p [ i − 1 ] , d p [ i / 2 ] , d p [ i / 3 ] } + 1 , n ∣ 2 , n ∣ 3 dp[i]= \begin{cases} dp[i-1]+1,& \text{$n \nmid 2 ,n \nmid3$}\\ min\{dp[i-1],dp[i/2]\}+1,& \text{$n\mid2,n\nmid 3$}\\ min\{dp[i-1],dp[i/3]\}+1,& \text{$n\nmid2,n\mid 3$}\\ min\{dp[i-1],dp[i/2],dp[i/3]\}+1,&\text{$n\mid2,n\mid3$} \end{cases} dp[i]=dp[i1]+1,min{dp[i1],dp[i/2]}+1,min{dp[i1],dp[i/3]}+1,min{dp[i1],dp[i/2],dp[i/3]}+1,n2,n3n2,n3n2,n3n2,n3
且有 d p [ 1 ] = 0 , d p [ 2 ] = 1 , d p [ 3 ] = 1 dp[1]=0,dp[2]=1,dp[3]=1 dp[1]=0,dp[2]=1,dp[3]=1
所以可以通过遍历一遍 d p dp dp数组得到解,时间复杂度为 O ( n ) O(n) O(n)
代码如下:

#include <iostream>
#include <assert.h>
using namespace std;
#define MAX 1000000000
class Solution
{
public:
    int minOperations(int n)
    {
        assert(n > 0);            //注意n是大于0的正整数
        int *dp = new int[n + 1]; //注意数组下标
        for (int i = 1; i < n + 1; i++)
            dp[i] = MAX;

        dp[1] = 0;
        dp[2] = 1;
        dp[3] = 1;
        if (n >= 4)
        {
            for (int i = 4; i <= n; i++)
            {
                if (i % 2 != 0 && i % 3 != 0) // i不整除2也不整除3
                    dp[i] = dp[i - 1] + 1;
                else if (i % 2 == 0 && i % 3 != 0)
                    dp[i] = min(dp[i - 1], dp[i / 2]) + 1;
                else if (i % 3 == 0 && i % 2 != 0)
                    dp[i] = min(dp[i - 1], dp[i / 3]) + 1;
                else if (i % 3 == 0 && i % 2 == 0)
                    dp[i] = min(dp[i - 1], min(dp[i / 2], dp[i / 3])) + 1;
            }
        }
        return dp[n];
    }
};
int main()
{
    Solution s;
    cout << s.minOperations(6561) << endl;
}

执行上面的样例,并使用time命令测试运行时间,输出结果为:
在这里插入图片描述
可以看到,快还是 O ( n ) O(n) O(n)快啊~,上面 O ( 3 n ) O(3^n) O(3n)暴力算法只要 n n n的大小超过1000,就会迟迟得不到结果。

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
求1-n的最小公倍数可以使用辗转相除法和穷举法两种方法。 使用辗转相除法的步骤如下: 1. 初始化最小公倍数为1。 2. 从2开始遍历到n,对每个数执行以下操作: a. 判断当前数与最小公倍数的最大公约数是否为1,如果是,则将最小公倍数乘以当前数。 b. 如果最大公约数不是1,则将最小公倍数除以最大公约数,再乘以当前数。 3. 返回最小公倍数的值。 使用穷举法的步骤如下: 1. 初始化最小公倍数为n。 2. 从n-1开始递到1,对每个数执行以下操作: a. 如果当前数与最小公倍数取模不为0,将最小公倍数加上n。 3. 返回最小公倍数的值。 两种方法都能够正确求得1-n的最小公倍数,选择哪种方法主要取决于具体的情况和n的大小。 举个例子,如果我们要求1-10的最小公倍数,可以使用辗转相除法: 1. 初始化最小公倍数为1。 2. 遍历2到10的每个数: a. 对于2,判断1和2的最大公约数是否为1,是的话,将最小公倍数乘以2,得到2。 b. 对于3,判断2和3的最大公约数是否为1,是的话,将最小公倍数乘以3,得到6。 c. 对于4,判断6和4的最大公约数是否为1,不是的话,将最小公倍数除以2,再乘以4,得到12。 d. 对于5,判断12和5的最大公约数是否为1,是的话,将最小公倍数乘以5,得到60。 e. 对于6,判断60和6的最大公约数是否为1,不是的话,将最小公倍数除以6,再乘以6,得到60。 f. 对于7、8、9、10,都与60的最大公约数为1,所以将最小公倍数分别乘以7、8、9、10,得到最终结果2520。 4. 返回最小公倍数2520。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [求1~n的最小公倍数(LCM)](https://blog.csdn.net/coldwind902/article/details/124548995)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *3* [最大公约数最小公倍数n-s盒图](https://download.csdn.net/download/d52370/11026280)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值