给定一个完全由小写英文字母组成的字符串等差递增序列,该序列中的每个字符串的长度固定为 L,从 L 个 a 开始,以 1 为步长递增。例如当 L 为 3 时,序列为 { aaa, aab, aac, ..., aaz, aba, abb, ..., abz, ..., zzz }。这个序列的倒数第27个字符串就是 zyz。对于任意给定的 L,本题要求你给出对应序列倒数第 N 个字符串。
输入格式:
输入在一行中给出两个正整数 L(2 ≤ L ≤ 6)和 N(≤105)。
输出格式:
在一行中输出对应序列倒数第 N 个字符串。题目保证这个字符串是存在的。
输入样例:
3 7417
输出样例:
pat
#include<bits/stdc++.h>
#define ll long long
#define ull unsigned long long
using namespace std;
stack<char> v;
int main(){
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
int n,len;
cin>>n>>len;
len--;
string end(n,'z');
while(len){
v.push(len%26+'a');
len/=26;
}
string s="";
for(;v.empty()==false;){
s+=v.top();
v.pop();
}
for(int i=0;i<s.size();i++){
end[end.size()-1-i] = end[end.size()-1-i] - s[s.size()-i-1] + 'a';
}
cout<<end;
}
思路:把字符串当成26进制的数字,数字转26进制字符串,再相减