《应用多元分析》——王学民,第三章(2)

3.10

x ∼ N 2 ( 0 , I ) \boldsymbol{x} \sim N_{2}(\boldsymbol{0}, \boldsymbol{I}) xN2(0,I), 其中 x = ( x 1 , x 2 ) ′ \boldsymbol{x}=\left(x_{1}, x_{2}\right)^{\prime} x=(x1,x2), 试求已知 x 1 + x 2 x_{1}+x_{2} x1+x2 x 1 x_{1} x1 的条件分布。

答案

( x 1 x 1 + x 2 ) = ( 1 0 1 1 ) ( x 1 x 2 ) ∼ N 2 ( ( 0 0 ) , ( 1 1 1 2 ) ) \left(\begin{array}{c}x_{1} \\ x_{1}+x_{2} \end{array}\right)=\left(\begin{array}{rr} 1 & 0 \\ 1 & 1 \end{array}\right)\left(\begin{array}{c}x_{1}\\x_{2}\end{array}\right) \sim{N_{2}\left(\left(\begin{array}{r} 0 \\ 0 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 1 & 2 \end{array}\right)\right)} (x1x1+x2)=(1101)(x1x2)N2((00),(1112))

于是
E ( x 1 ∣ x 1 + x 2 ) = 0 + 1 × 1 2 × [ ( x 1 + x 2 ) + 0 ] = x 1 + x 2 2 \begin{aligned}E(x_{1}\mid x_{1}+x_{2})&=0+1\times\frac{1}{2}\times\left[(x_{1}+x_{2})+0\right]\\&=\frac{x_{1}+x_{2}}{2}\end{aligned} E(x1x1+x2)=0+1×21×[(x1+x2)+0]=2x1+x2

V ( x 1 ∣ x 1 + x 2 ) = 1 − 1 × 1 2 × 1 = 1 2 \begin{aligned}V(x_{1}\mid x_{1}+x_{2})&=1-1\times\frac{1}{2}\times 1=\frac{1}{2}\end{aligned} V(x1x1+x2)=11×21×1=21

故已知 x 1 + x 2 x_{1}+x_{2} x1+x2 x 1 x_{1} x1 的条件分布为 N ( x 1 + x 2 2 , 1 2 ) N(\frac{x_{1}+x_{2}}{2},\frac{1}{2}) N(2x1+x2,21)

3.11

试证
∑ i = 1 n ( x i − x ˉ ) ′ Σ − 1 ( x i − x ˉ ) = min ⁡ μ ∑ i = 1 n ( x i − μ ) ′ Σ − 1 ( x i − μ ) \sum_{i=1}^{n}\left(\boldsymbol{x}_{i}-\bar{\boldsymbol{x}}\right)^{\prime} \boldsymbol\Sigma^{-1}\left(\boldsymbol{x}_{i}-\bar{\boldsymbol{x}}\right)=\min _{\boldsymbol\mu} \sum_{i=1}^{n}\left(\boldsymbol{x}_{i}-\boldsymbol\mu\right)^{\prime} \Sigma^{-1}\left(\boldsymbol{x}_{i}-\boldsymbol\mu\right) i=1n(xixˉ)Σ1(xixˉ)=μmini=1n(xiμ)Σ1(xiμ)

答案

∑ i = 1 n ( x i − μ ) ′ ( x i − μ ) = ∑ i = 1 n [ ( x i − x ˉ ) + ( x ˉ μ ) ] ′ Σ − 1 [ ( x i − x ˉ ) ( x ˉ − μ ) ] = ∑ i = 1 n ( x i − x ˉ ) ′ Σ − 1 ( x i − x ˉ ) + n ( x ˉ − μ ) ′ Σ − 1 ( x ˉ − μ ) \begin{aligned}\sum_{i=1}^{n}(\boldsymbol x_{i}-\boldsymbol\mu)^{\prime}(\boldsymbol x_{i}-\boldsymbol \mu)&=\sum_{i=1}^{n}\left[(\boldsymbol x_{i}-\bar{\boldsymbol x})+(\bar{\boldsymbol x}\boldsymbol\mu)\right]^{\prime}\boldsymbol{\Sigma}^{-1}\left[(\boldsymbol x_{i}-\bar{\boldsymbol x})(\bar{\boldsymbol x}-\boldsymbol\mu)\right]\\&=\sum_{i=1}^{n}(\boldsymbol x_{i}-\bar{\boldsymbol x})^{\prime}\boldsymbol{\Sigma}^{-1}(\boldsymbol x_{i}-\bar{\boldsymbol x})+n(\bar{\boldsymbol x}-\boldsymbol{\mu})^{\prime}\boldsymbol{\Sigma}^{-1}(\bar{\boldsymbol x}-\boldsymbol{\mu})\end{aligned} i=1n(xiμ)(xiμ)=i=1n[(xixˉ)+(xˉμ)]Σ1[(xixˉ)(xˉμ)]=i=1n(xixˉ)Σ1(xixˉ)+n(xˉμ)Σ1(xˉμ)

故当 μ = x ˉ \boldsymbol \mu=\bar{\boldsymbol x} μ=xˉ时,上式达到最小值。

3.12

在习题 3.2 3.2 3.2 中, μ = ( 10 , 4 , 7 ) ′ \boldsymbol{\mu}=(10,4,7)^{\prime} μ=(10,4,7), 试求
(1) ( x 1 , x 2 ) \left(x_{1}, x_{2}\right) (x1,x2) 的边缘分布;
(2) x 1 ∣ ( x 2 , x 3 ) x_{1} \mid\left(x_{2}, x_{3}\right) x1(x2,x3) ( x 1 , x 2 ) ∣ x 3 \left(x_{1}, x_{2}\right) \mid x_{3} (x1,x2)x3 的条件分布;
(3) x 3 x_{3} x3 给定时, x 1 x_{1} x1 x 2 x_{2} x2 的偏相关系数;
(4) x 1 x_{1} x1 ( x 2 , x 3 ) \left(x_{2}, x_{3}\right) (x2,x3) 的复相关系数。

答案

(1)

( x 1 x 2 ) = ( 1 0 0 1 ) ( x 1 x 2 ) E ( x 1 , x 2 ) = ( 1 0 0 1 ) ( 10 4 ) = ( 10 4 ) V ( x 1 , x 2 ) = ( 1 0 0 1 ) ( 9 − 3 − 3 5 ) ( 1 0 0 1 ) = ( 9 − 3 − 3 5 ) N 2 ( ( 10 4 ) , ( 9 − 3 − 3 5 ) ) \left(\begin{array}{c}x_{1} \\ x_{2}\end{array}\right)=\left(\begin{array}{cc}1&0 \\0&1\end{array}\right)\left(\begin{array}{c}x_{1}\\x_{2}\end{array}\right)\\ E(x_{1},x_{2})=\left(\begin{array}{cc}1&0\\0&1\end{array}\right)\left(\begin{array}{c}10\\4\end{array}\right)=\left(\begin{array}{c}10\\4\end{array}\right)\\ V(x_{1},x_{2})=\left(\begin{array}{cc}1&0 \\0&1\end{array}\right)\left(\begin{array}{cc}9&-3\\-3&5\end{array}\right)\left(\begin{array}{cc}1&0 \\0&1\end{array}\right)=\left(\begin{array}{cc}9 & -3 \\ -3 & 5\end{array}\right)\\ N_2\left( \left(\begin{array}{c}10 \\ 4\end{array}\right), \left(\begin{array}{cc}9 & -3 \\ -3 & 5\end{array}\right) \right) (x1x2)=(1001)(x1x2)E(x1,x2)=(1001)(104)=(104)V(x1,x2)=(1001)(9335)(1001)=(9335)N2((104),(9335))

(2)

由题意得
( x 1 x 2 x 3 ) = ( 1 0 0 0 1 0 0 0 1 ) ( x 1 x 2 x 3 ) E ( x 1 x 2 x 3 ) = ( 1 0 0 0 1 0 0 0 1 ) ( 10 4 7 ) = ( 10 4 7 ) V ( x 1 x 2 x 3 ) = ( 1 0 0 0 1 0 0 0 1 ) ( 9 − 3 − 3 − 3 5 1 − 1 5 ) ( 1 0 0 0 1 0 0 0 1 ) \left(\begin{array}{c}x_{1}\\x_{2}\\x_{3}\end{array}\right)=\left(\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right)\left(\begin{array}{c}x_{1}\\x_{2}\\x_{3}\end{array}\right)\\E\left(\begin{array}{c}x_{1}\\x_{2}\\x_{3}\end{array}\right)=\left(\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right)\left(\begin{array}{c}10\\4\\7\end{array}\right)=\left(\begin{array}{c}10\\4\\7\end{array}\right)\\V\left(\begin{array}{c}x_{1}\\x_{2}\\x_{3}\end{array}\right)=\left(\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right)\left(\begin{array}{ccc}9&-3&-3\\-3&5&1\\-&1&5\end{array}\right)\left(\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right) x1x2x3 = 100010001 x1x2x3 E x1x2x3 = 100010001 1047 = 1047 V x1x2x3 = 100010001 93351315 100010001

E ( x 1 ∣ ( x 2 x 3 ) ) = 10 + ( − 3 , − 3 ) ( 5 1 1 5 ) − 1 [ ( x 2 x 3 ) − ( 4 7 ) ] = − x 2 2 − x 3 2 + 15 1 2 \begin{aligned}E\Big(x_{1}\Big|\left(\begin{array}{r}x_{2} \\ x_{3}\end{array}\right)\Big)&=10+(-3,-3)\left(\begin{array}{rr}5 & 1 \\ 1 & 5 \end{array}\right)^{-1}\Big[\left(\begin{array}{r} x_{2} \\ x_{3}\end{array}\right)-\left(\begin{array}{r}4 \\ 7\end{array}\right)\Big]\\ &=-\frac{x_{2}}{2}-\frac{x_{3}}{2}+15\frac{1}{2}\end{aligned} E(x1 (x2x3))=10+(3,3)(5115)1[(x2x3)(47)]=2x22x3+1521

V ( x 1 ∣ ( x 2 x 3 ) ) = 9 − ( − 3 , − 3 ) ( 5 1 1 5 ) − 1 ( − 3 − 3 ) = 6 \begin{aligned}V\Big(x_{1}\Big|\left(\begin{array}{r}x_{2}\\x_{3}\end{array}\right)\Big)&=9-(-3,-3)\left(\begin{array}{rr}5 & 1 \\ 1 & 5 \end{array}\right)^{-1}\left(\begin{array}{r}-3 \\-3\end{array}\right)=6\end{aligned} V(x1 (x2x3))=9(3,3)(5115)1(33)=6
x 1 ∣ ( x 2 x 3 ) ∼ ( − x 2 2 − x 3 2 + 15 1 2 , 6 ) x_{1}\Big|\left(\begin{array}{r}x_{2}\\x_{3}\end{array}\right)\sim(-\frac{x_{2}}{2}-\frac{x_{3}}{2}+15\frac{1}{2},6) x1 (x2x3)(2x22x3+1521,6)

又因为:
E ( ( x 1 x 2 ) ∣ x 3 ) = ( 10 4 ) + ( − 3 1 ) 1 5 ( x 3 − 7 ) = ( − 3 5 x 3 + 14 1 5 1 5 x 3 + 2 3 5 ) \begin{aligned}E\Big(\left(\begin{array}{r}x_{1} \\ x_{2}\end{array}\right)\Big|x_{3}\Big)&=\left(\begin{array}{r}10 \\ 4\end{array}\right)+\left(\begin{array}{c}-3 \\ 1\end{array}\right)\frac{1}{5}(x_{3}-7)\\&=\left(\begin{array}{c} -\frac{3}{5}x_{3}+14\frac{1}{5} \\ \frac{1}{5}x_{3}+2\frac{3}{5}\end{array}\right)\end{aligned} E((x1x2) x3)=(104)+(31)51(x37)=(53x3+145151x3+253)

V ( ( x 1 x 2 ) ∣ x 3 ) = ( 9 − 3 − 3 5 ) − ( − 3 1 ) 1 5 ( − 3 , 1 ) = 12 5 ( 3 − 1 − 1 2 ) \begin{aligned}V\Big(\left(\begin{array}{r}x_{1} \\ x_{2}\end{array}\right)\Big|x_{3}\Big)&=\left(\begin{array}{rr} 9 & -3 \\ -3 & 5\end{array}\right)-\left(\begin{array}{r}-3 \\ 1\end{array}\right)\frac{1}{5}\left(-3,1\right)\\&=\frac{12}{5}\left(\begin{array}{cc}3 & -1 \\ -1 & 2\end{array}\right)\end{aligned} V((x1x2) x3)=(9335)(31)51(3,1)=512(3112)
( x 1 x 2 ) ∣ x 3 ∼ N 2 ( ( − 3 5 x 3 + 14 1 5 1 5 x 3 + 2 3 5 ) , 12 5 ( 3 − 1 − 1 2 ) ) \left(\begin{array}{r}x_{1} \\ x_{2}\end{array}\right)\Big|x_{3}\sim N_{2}\left(\left(\begin{array}{c}-\frac{3}{5}x_{3}+14\frac{1}{5} \\ \frac{1}{5}x_{3}+2\frac{3}{5}\end{array}\right),\frac{12}{5}\left(\begin{array}{cc}3 & -1 \\ -1 & 2\end{array}\right)\right) (x1x2) x3N2((53x3+145151x3+253),512(3112))

(3)

( 2 ) (2) (2)知, x 3 x_{3} x3给定时, ( x 1 x 2 ) \left(\begin{array}{r}x_{1} \\ x_{2}\end{array}\right) (x1x2)的偏协方差矩阵为 12 5 ( 3 − 1 − 1 2 ) \frac{12}{5}\left(\begin{array}{rr}3 & -1 \\ -1 & 2\end{array}\right) 512(3112),故其偏相关系数为 − 1 3 2 = − 6 6 \frac{-1}{\sqrt{3}\sqrt{2}}=-\frac{\sqrt{6}}{6} 3 2 1=66

(4)

由题意得:

( − 3 , − 3 ) ( 5 1 1 5 ) − 1 ( − 3 − 3 ) 9 = 3 3 \sqrt\frac{{(-3,-3)\left(\begin{array}{rr}5 & 1 \\ 1 & 5\end{array}\right)^{-1}\left(\begin{array}{r}-3 \\ -3\end{array}\right)}}{9}=\frac{\sqrt{3}}{3} 9(3,3)(5115)1(33) =33

3.13

x ∼ N 3 ( 0 , Σ ) \boldsymbol{x} \sim N_{3}(\boldsymbol{0}, \boldsymbol{\Sigma}) xN3(0,Σ), 其中

Σ = ( 1 ρ 12 ρ 13 ρ 12 1 ρ 23 ρ 13 ρ 23 1 ) \boldsymbol{\Sigma}=\left(\begin{array}{ccc} 1 & \rho_{12} & \rho_{13} \\ \rho_{12} & 1 & \rho_{23} \\ \rho_{13} & \rho_{23} & 1 \end{array}\right) Σ= 1ρ12ρ13ρ121ρ23ρ13ρ231

试求
(1) x 3 ∣ ( x 1 , x 2 ) x_{3} \mid\left(x_{1}, x_{2}\right) x3(x1,x2) 的条件分布;
(2) 给定 x 3 x_{3} x3 时, x 1 x_{1} x1 x 2 x_{2} x2 的偏协方差。

答案

(1)

( x 3 x 1 x 2 ) ∼ N 3 ( ( 0 0 0 ) , ( 1 ρ 13 ρ 23 ρ 13 1 ρ 12 ρ 23 ρ 12 1 ) ) \left(\begin{array}{r}x_{3} \\ x_{1} \\ x_{2}\end{array}\right) \sim N_{3}\left(\left(\begin{array}{r}0 \\ 0 \\ 0 \\\end{array}\right),\left(\begin{array}{rrr}1 & \rho_{13} & \rho_{23} \\ \rho_{13} & 1 & \rho_{12} \\ \rho_{23} & \rho_{12} & 1 \end{array}\right)\right) x3x1x2 N3 000 , 1ρ13ρ23ρ131ρ12ρ23ρ121

E ( x 3 ∣ ( x 1 x 2 ) ) = 0 + ( ρ 13 , ρ 23 ) ( 1 ρ 12 ρ 12 1 ) − 1 [ ( x 1 x 2 ) − ( 0 0 ) ] = ρ 13 − ρ 12 ρ 23 1 − ρ 12 2 x 1 + ρ 23 − ρ 12 ρ 13 1 − ρ 12 2 x 2 \begin{aligned} E\Big(x_{3}\Big|\left(\begin{array}{r}x_{1} \\ x_{2}\end{array}\right)\Big) &=0+(\rho_{13},\rho_{23})\left(\begin{array}{rr}1 & \rho_{12} \\ \rho_{12} & 1\end{array}\right)^{-1}\Big[\left(\begin{array}{r}x_{1} \\ x_{2}\end{array}\right)-\left(\begin{array}{r}0 \\ 0 \end{array}\right)\Big]\\&=\frac{\rho_{13}-\rho_{12}\rho_{23}}{1-\rho_{12}^2}x_{1}+\frac{\rho_{23}-\rho_{12}\rho_{13}}{1-\rho_{12}^2}x_{2}\end{aligned} E(x3 (x1x2))=0+(ρ13,ρ23)(1ρ12ρ121)1[(x1x2)(00)]=1ρ122ρ13ρ12ρ23x1+1ρ122ρ23ρ12ρ13x2

V ( x 3 ∣ ( x 1 x 2 ) ) = 1 − ( ρ 13 , ρ 23 ) ( 1 ρ 12 ρ 12 1 ) − 1 ( ρ 13 ρ 13 ) = 1 − ρ 12 2 − ρ 13 2 − ρ 23 2 + 2 ρ 12 ρ 13 ρ 23 1 − ρ 12 2 \begin{aligned} V\Big(x_{3}\Big|\left(\begin{array}{r}x_{1} \\ x_{2}\end{array}\right)\Big) &=1-(\rho_{13},\rho_{23})\left(\begin{array}{rr}1 & \rho_{12} \\\rho_{12} & 1\end{array}\right)^{-1}\left(\begin{array}{r}\rho_{13} \\ \rho_{13}\end{array}\right)\\ &=\frac{1-\rho_{12}^{2}-\rho_{13}^{2}-\rho_{23}^{2}+2\rho_{12}\rho_{13}\rho_{23}}{1-\rho_{12}^{2}} \end{aligned} V(x3 (x1x2))=1(ρ13,ρ23)(1ρ12ρ121)1(ρ13ρ13)=1ρ1221ρ122ρ132ρ232+2ρ12ρ13ρ23

x 3 ∣ ( x 1 x 2 ) ∼ N ( ρ 13 − ρ 12 ρ 23 1 − ρ 12 2 x 1 + ρ 23 − ρ 12 ρ 13 1 − ρ 12 2 , 1 − ρ 12 2 − ρ 13 2 − ρ 23 2 + 2 ρ 12 ρ 13 ρ 23 1 − ρ 12 2 ) x_{3}\Big|\left(\begin{array}{r}x_{1} \\ x_{2}\end{array}\right) \sim N(\frac{\rho_{13}-\rho_{12}\rho_{23}}{1-\rho_{12}^{2}}x_{1}+\frac{\rho_{23}-\rho_{12}\rho_{13}}{1-\rho_{12}^{2}},\frac{1-\rho_{12}^{2}-\rho_{13}^{2}-\rho_{23}^{2}+2\rho_{12}\rho_{13}\rho_{23}}{1-\rho_{12}^{2}}) x3 (x1x2)N(1ρ122ρ13ρ12ρ23x1+1ρ122ρ23ρ12ρ13,1ρ1221ρ122ρ132ρ232+2ρ12ρ13ρ23)

(2)

给定 x 3 x_{3} x3时, ( x 1 x 2 ) \left(\begin{array}{r}x_{1} \\ x_{2}\end{array}\right) (x1x2)的偏协方差矩阵为
( 1 ρ 12 ρ 12 1 ) − ( ρ 13 ρ 23 ) ( ρ 13 , ρ 23 ) = ( 1 − ρ 13 2 ρ 12 − ρ 13 ρ 13 ρ 12 − ρ 13 ρ 23 1 − ρ 23 2 ) \left(\begin{array}{cc}1 & \rho_{12} \\ \rho_{12} & 1\end{array}\right)- \left(\begin{array}{r}\rho_{13} \\ \rho_{23}\end{array}\right)(\rho_{13},\rho_{23})= \left(\begin{array}{cc}1-\rho_{13}^{2} & \rho_{12}-\rho_{13}\rho_{13} \\ \rho_{12}-\rho_{13}\rho_{23} & 1-\rho_{23}^{2} \end{array}\right) (1ρ12ρ121)(ρ13ρ23)(ρ13,ρ23)=(1ρ132ρ12ρ13ρ23ρ12ρ13ρ131ρ232)

3.14


A = ( 1 4 1 4 1 4 1 4 1 2 − 1 2 0 0 1 6 1 6 − 2 6 0 1 12 1 12 1 12 − 3 12 ) A=\left(\begin{array}{cccc} \frac{1}{\sqrt{4}} & \frac{1}{\sqrt{4}} & \frac{1}{\sqrt{4}} & \frac{1}{\sqrt{4}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 & 0 \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & -\frac{2}{\sqrt{6}} & 0 \\ \frac{1}{\sqrt{12}} & \frac{1}{\sqrt{12}} & \frac{1}{\sqrt{12}} & -\frac{3}{\sqrt{12}} \end{array}\right) A= 4 12 16 112 14 12 16 112 14 106 212 14 10012 3
(1) 试证 A A ′ = I \boldsymbol{A A}^{\prime}=\boldsymbol{I} AA=I, 即 A \boldsymbol{A} A 是一个正交矩阵;
(2) 设 y = A x \boldsymbol{y}=\boldsymbol{A x} y=Ax, 其中 x ∼ N 4 ( μ 1 , σ 2 I ) , 1 = ( 1 , 1 , 1 , 1 ) ′ \boldsymbol{x} \sim N_{4}\left(\mu \mathbf{1}, \sigma^{2} \boldsymbol{I}\right), \mathbf{1}=(1,1,1,1)^{\prime} xN4(μ1,σ2I),1=(1,1,1,1), 试证
y 2 2 + y 3 2 + y 4 2 = ∑ i = 1 4 x i 2 − 1 4 ( ∑ i = 1 4 x i ) 2 y_{2}^{2}+y_{3}^{2}+y_{4}^{2}=\sum_{i=1}^{4} x_{i}^{2}-\frac{1}{4}\left(\sum_{i=1}^{4} x_{i}\right)^{2} y22+y32+y42=i=14xi241(i=14xi)2
y 1 , y 2 , y 3 , y 4 y_{1}, y_{2}, y_{3}, y_{4} y1,y2,y3,y4 相互独立, 且 y 1 ∼ N ( 2 μ , σ 2 ) , y i ∼ N ( 0 , σ 2 ) , i = 2 , 3 , 4 y_{1} \sim N\left(2 \mu, \sigma^{2}\right), y_{i} \sim N\left(0, \sigma^{2}\right), i=2,3,4 y1N(2μ,σ2),yiN(0,σ2),i=2,3,4

答案

(1) A \boldsymbol{A} A 4 4 4个行向量均为单位向量且彼此正交,所以 A \boldsymbol{A} A是正交矩阵。

(2)从 y = A x \boldsymbol{y}=\boldsymbol{A}\boldsymbol{x} y=Ax,可见 y ′ y = ( A x ) ′ A x = x ′ x \boldsymbol{y^{\prime}y}=\boldsymbol{(Ax)^{\prime}Ax}=\boldsymbol{x^{\prime}x} yy=(Ax)Ax=xx,且 y 1 = 1 2 ∑ i = 1 4 x i y_{1}=\frac{1}{2}\sum_{i=1}^{4}x_{i} y1=21i=14xi,从而
y 2 2 + y 3 2 + y 4 2 = y ′ y − y 1 2 = x ′ x − ( 1 2 ∑ i = 1 4 x i ) 2 = ∑ i = 1 4 x i 2 − 1 4 ( ∑ i = 1 4 x i ) 2 \begin{aligned} y_{2}^{2}+y_{3}^{2}+y_{4}^{2}&=\boldsymbol{y^{\prime}y}-y_{1}^{2}\\ &=\boldsymbol{x^{\prime}x}-(\frac{1}{2}\sum_{i=1}^{4}x_{i})^{2}\\ &=\sum_{i=1}^{4}x_{i}^{2}-\frac{1}{4}(\sum_{i=1}^{4}x_{i})^{2}\\ \end{aligned} y22+y32+y42=yyy12=xx(21i=14xi)2=i=14xi241(i=14xi)2
于是
y = A x ∼ N 4 ( μ A 1 , σ 2 A A ′ ) = N 4 ( μ A 1 , σ 2 I ) \boldsymbol{y}=\boldsymbol{Ax}\sim N_{4}(\mu\boldsymbol{A}\mathbf{1},\sigma^{2}\boldsymbol{AA^{\prime}})=N_{4}(\mu\boldsymbol{A}\mathbf{1},\sigma^{2}\boldsymbol{I}) y=AxN4(μA1,σ2AA)=N4(μA1,σ2I)

y 1 , y 2 , y 3 , y 4 y_{1},y_{2},y_{3},y_{4} y1,y2,y3,y4相互独立,且 y ∼ N ( 2 μ , σ 2 ) , y ∼ N ( 0 , σ 2 ) , i = 2 , 3 , 4 y\sim N(2\mu,\sigma^{2}),y\sim N(0,\sigma^{2}),i=2,3,4 yN2μ,σ2),yN(0,σ2),i=2,3,4

3.15

x ∼ N n ( μ , σ 2 I ) , x ˉ = 1 n ∑ i = 1 n x i , ( n − 1 ) s 2 = ∑ i = 1 n ( x i − x ˉ ) 2 = ∑ i = 1 n x i 2 − n x ˉ 2 = ∑ i = 1 n x i 2 − \boldsymbol{x} \sim N_{n}\left(\boldsymbol{\mu}, \sigma^{2} \boldsymbol{I}\right), \bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i},(n-1) s^{2}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}=\sum_{i=1}^{n} x_{i}^{2}-n \bar{x}^{2}=\sum_{i=1}^{n} x_{i}^{2}- xNn(μ,σ2I),xˉ=n1i=1nxi,(n1)s2=i=1n(xixˉ)2=i=1nxi2nxˉ2=i=1nxi2 1 n ( ∑ i = 1 n x i ) 2 \frac{1}{n}\left(\sum_{i=1}^{n} x_{i}\right)^{2} n1(i=1nxi)2, 试证 x ˉ \bar{x} xˉ s 2 s^{2} s2 相互独立。

[ 提示: 证法一。参考习题3.14,令
A = ( 1 n 1 n 1 n ⋯ 1 n 1 n 1 2 ⋅ 1 − 1 2 ⋅ 1 0 ⋯ 0 0 1 3 ⋅ 2 1 3 ⋅ 2 − 2 − 2 3 ⋅ 2 ⋯ 0 0 ⋮ ⋮ ⋮ ⋮ ⋮ 1 n ( n − 1 ) 1 n ( n − 1 ) 1 n ( n − 1 ) ⋯ 1 n ( n − 1 ) − ( n − 1 ) n ( n − 1 ) ) \boldsymbol{A}=\left(\begin{array}{cccccc} \frac{1}{\sqrt{n}} & \frac{1}{\sqrt{n}} & \frac{1}{\sqrt{n}} & \cdots & \frac{1}{\sqrt{n}} & \frac{1}{\sqrt{n}} \\\frac{1}{\sqrt{2 \cdot 1}} & \frac{-1}{\sqrt{2 \cdot 1}} & 0 & \cdots & 0 & 0 \\ \frac{1}{\sqrt{3 \cdot 2}} & \frac{1}{\sqrt{3 \cdot 2}}-2 \frac{-2}{\sqrt{3 \cdot 2}} & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\\frac{1}{\sqrt{n(n-1)}} & \frac{1}{\sqrt{n(n-1)}} & \frac{1}{\sqrt{n(n-1)}} & \cdots & \frac{1}{\sqrt{n(n-1)}} & \frac{-(n-1)}{\sqrt{n(n-1)}}\end{array}\right) A= n 121 132 1n(n1) 1n 121 132 1232 2n(n1) 1n 10n(n1) 10n 100n(n1) 1n 10n(n1) (n1)

  • 证法二。利用 § 3.2 \S 3.2 §3.2 中的性质 ( 9 ) (9) (9), 证明 x ˉ = 1 n 1 ′ x \bar{x}=\frac{1}{n} \mathbf{1}^{\prime} \boldsymbol{x} xˉ=n11x ( x 1 − x ˉ x 2 − x ˉ ⋮ x n − x ˉ ) = ( I − 1 n 11 ′ ) x \left(\begin{array}{c}x_{1}-\bar{x} \\ x_{2}-\bar{x} \\ \vdots \\ x_{n}-\bar{x}\end{array}\right)=\left(\boldsymbol{I}-\frac{1}{n} \mathbf{1 1}^{\prime}\right) \boldsymbol{x} x1xˉx2xˉxnxˉ =(In111)x 独立, 其中 1 = ( 1 , 1 , ⋯   , 1 ) ′ \mathbf{1}=(1,1,\cdots, 1)^{\prime} 1=(1,1,,1)]

答案

证法一

易见, A \boldsymbol{A} A的所有行都是单位向量且彼此正交,故 A \boldsymbol{A} A是正交矩阵。令 y = A x \boldsymbol{y=Ax} y=Ax,于是 V ( y ) = A ( σ 2 I ) A ′ = σ 2 A A ′ = σ 2 I V(y)=\boldsymbol{A}(\sigma^{2}\boldsymbol{I})\boldsymbol{A^{\prime}}=\sigma^{2}\boldsymbol{AA^{\prime}}=\sigma^{2}\boldsymbol{I} V(y)=A(σ2I)A=σ2AA=σ2I,从而 y ∼ N n ( ∗ , σ 2 I ) y\sim N_{n}(*,\sigma^{2}\boldsymbol{I}) yNn(,σ2I),故 y 1 , y 2 , ⋯   , y n y_{1},y_{2},\cdots ,y_{n} y1,y2,,yn相互独立。因为 y 1 = ( 1 n 1 ′ ) x = 1 n ∑ i = 1 n x i y_{1}=(\frac{1}{\sqrt{n}}\mathbf{1}^{\prime})x=\frac{1}{\sqrt{n}}\sum_{i=1}^{n}x_{i} y1=(n 11)x=n 1i=1nxi,且 ∑ i = 1 n y i 2 = y y ′ = ( A x ) ′ ( A x ) = x ′ x = ∑ i = 1 n x i 2 \sum_{i=1}^{n}y_{i}^{2}=\boldsymbol{yy^{\prime}}=(\boldsymbol{Ax})^{\prime}(\boldsymbol{Ax})=\boldsymbol{x^{\prime}x}=\sum_{i=1}^{n}x_{i}^{2} i=1nyi2=yy=(Ax)(Ax)=xx=i=1nxi2,于是
x ˉ = 1 n ∑ i = 1 n x i = 1 n y 1 ( n − 1 ) s 2 = ∑ i = 1 n x i 2 − 1 n ( ∑ i = 1 n x i ) 2 = ∑ i = 1 n y i 2 − y 1 2 = ∑ i = 2 n y i 2 \bar x=\frac{1}{n}\sum_{i=1}^{n}x_{i}=\frac{1}{\sqrt{n}}y_{1}\\ (n-1)s^{2}=\sum_{i=1}^{n}x_{i}^{2}-\frac{1}{n}(\sum_{i=1}^{n}x_{i})^{2}=\sum_{i=1}^{n}y_{i}^{2}-y_{1}^{2}=\sum_{i=2}^{n}y_{i}^{2} xˉ=n1i=1nxi=n 1y1(n1)s2=i=1nxi2n1(i=1nxi)2=i=1nyi2y12=i=2nyi2
所以 x ˉ \bar x xˉ s 2 s_{2} s2独立。

证法二

x \boldsymbol{x} x 为多元正态变量,且
( 1 n 1 ′ ) ( σ 2 I ) ( I − 1 n 1 1 ′ ) ′ = σ 2 n ( 1 ′ − 1 n 1 ′ 1 1 ′ ) = 0 ′ (\frac{1}{n}\mathbf{1}^{\prime})(\sigma^{2}\boldsymbol{I})(\boldsymbol{I}-\frac{1}{n}\mathbf{1}\mathbf{1}^{\prime})^{\prime}=\frac{\sigma^{2}}{n}(\mathbf{1}^{\prime}-\frac{1}{n}\mathbf{1}^{\prime}\mathbf{1}\mathbf{1}^{\prime})=\boldsymbol{0}^{\prime} (n11)(σ2I)(In111)=nσ2(1n1111)=0
于是由 § 3.2 \S 3.2 §3.2中的结论中的性质 ( 9 ) (9) (9)知, x ˉ = 1 n 1 ′ x \bar x=\frac{1}{n}\mathbf{1}^{\prime}x xˉ=n11x独立,而 s 2 s^{2} s2 ( x 1 − x ˉ x 2 − x ˉ ⋮ x n − x ˉ ) \left(\begin{array}{c}x_{1}-\bar x \\ x_{2}-\bar x \\ \vdots \\ x_{n}-\bar x\end{array}\right) x1xˉx2xˉxnxˉ 的函数,从而 x ˉ \bar x xˉ s 2 s^{2} s2独立。

3.16(有用结论)

x 1 , x 2 , ⋯   , x n x_{1}, x_{2}, \cdots, x_{n} x1,x2,,xn 是来自 p p p 维总体 x x x 的一个样本, 样本协方差矩阵 S > 0 \boldsymbol{S}>0 S>0, 试证 n > p n>p n>p

答案

B = ( x 1 − x ˉ , ⋯   , x n − x ˉ ) \boldsymbol{B}=(x_{1}-\bar x,\cdots,x_{n}-\bar x) B=(x1xˉ,,xnxˉ),则
S = 1 n − 1 ∑ i = 1 n ( x i − x ˉ ) ( x i − x ˉ ) ′ = 1 n − 1 B B ′ \boldsymbol{S}=\frac{1}{n-1}\sum_{i=1}^{n}(x_{i}-\bar x)(x_{i}-\bar x)^{\prime}=\frac{1}{n-1}\boldsymbol{BB^{\prime}} S=n11i=1n(xixˉ)(xixˉ)=n11BB

于是由 § 1.5 \S 1.5 §1.5的性质 ( 8 ) (8) (8)
r a n k ( B ) r a n k ( B B ′ ) = r a n k ( S ) = p rank(\boldsymbol{B})rank(\boldsymbol{BB^{\prime}})=rank(\boldsymbol{S})=p rank(B)rank(BB)=rank(S)=p
由于 ∑ i = 1 n ( x i − x ˉ ) = 0 \sum_{i=1}^{n}(x_{i}-\bar x)=0 i=1n(xixˉ)=0,从而 B \boldsymbol{B} B不是列满秩的,即有 r a n k ( B ) < n rank(\boldsymbol{B})<n rank(B)<n,故 n > p n>p n>p

3.17

试证 (3.4.1) 式中的最后一个等式。

答案

D = d i a g ( σ 11 , σ 22 , ⋯   , σ p p ) \boldsymbol{D}=diag(\sqrt{\sigma_{11}},\sqrt{\sigma_{22}},\cdots,\sqrt{\sigma_{pp}}) D=diag(σ11 ,σ22 ,,σpp ),其中 σ 11 , σ 22 , ⋯   , σ p p \sigma_{11},\sigma_{22},\cdots,\sigma_{pp} σ11,σ22,,σpp Σ x x \boldsymbol{\Sigma}_{xx} Σxx p p p个对角线元素,则
σ x y = C o v ( x , y ) = D ρ ( x , y ) σ y y = σ y y D ρ x y Σ x x = D R x x D \boldsymbol{\sigma}_{xy}=Cov(x,y)=\boldsymbol{D}\rho(x,y)\sqrt{\sigma_{yy}}=\sqrt{\sigma_{yy}}\boldsymbol{D\rho}_{xy}\\ \boldsymbol{\Sigma_{xx}}=\boldsymbol{DR_{xx}D} σxy=Cov(x,y)=Dρ(x,y)σyy =σyy xyΣxx=DRxxD
从而
σ x y ′ Σ x x − 1 σ x y σ y y = ( σ y y D ρ x y ) ′ ( D R x y D ) − 1 ( σ y y D ρ x y ) σ y y = ρ ′ x y R x x − 1 ρ x y \frac{\boldsymbol{{\sigma}_{xy}^{\prime}\Sigma_{xx}^{-1}\sigma_{xy}}}{\sigma_{yy}}=\frac{(\sqrt{\sigma_{yy}}\boldsymbol{D\rho}_{xy})^{\prime}(\boldsymbol{DR}_{xy}\boldsymbol{D})^{-1}(\sqrt{\sigma_{yy}}\boldsymbol{D\rho}_{xy})}{\sigma_{yy}}=\boldsymbol{\rho^{\prime}}_{xy}\boldsymbol{R}_{xx}^{-1}\boldsymbol{\rho}_{xy} σyyσxyΣxx1σxy=σyy(σyy xy)(DRxyD)1(σyy xy)=ρxyRxx1ρxy

*3.18

试证 (3.4.5) 式。

答案

g ( x ) = a + b ′ ( x − μ x ) g(\boldsymbol{x})=a+\boldsymbol{b^{\prime}(x-\mu_{x})} g(x)=a+b(xμx),于是
E [ y − g ( x ) ] 2 = E { ( y − y ˉ + [ y ˉ − g ( x ) ] } 2 = E ( y − y ˉ ) 2 + E [ y ˉ − g ( x ) ] 2 + 2 E ( y − y ˉ ) [ y ˉ − g ( x ) ] \begin{aligned} E[y-g(\boldsymbol{x})]^{2}&=E\{(y-\bar y+[\bar y-g(\boldsymbol{x})]\}^{2}\\ &=E(y-\bar y)^{2}+E[\bar y-g(\boldsymbol{x})]^{2}+2E(y-\bar y)[\bar y-g(\boldsymbol{x})]\\ \end{aligned} E[yg(x)]2=E{(yyˉ+[yˉg(x)]}2=E(yyˉ)2+E[yˉg(x)]2+2E(yyˉ)[yˉg(x)]
又因为
E ( y − y ˉ ) [ y ˉ − g ( x ) ] = E [ y − μ y − σ ′ x y Σ x x − 1 ( x − μ x ) ] [ μ y + σ x y ′ Σ x x − 1 ( x − μ x ) − a − b ′ ( x − μ x ) ] = E [ ( y − μ y ) − σ x y ′ Σ x x − 1 ( x − μ x ) ] [ ( σ x y ′ Σ x x − 1 − b ′ ) ( x − μ x ) ] = E [ ( y − μ y ) − σ x y ′ Σ x x − 1 ( x − μ x ) ] ( x − μ x ) ′ ( Σ x x − 1 σ x y − b ) = [ C o v ( y , x ) − σ x y ′ Σ x x − 1 V ( x ) ] ( Σ x x − 1 σ x y − b ) = ( σ x y ′ − σ x y ′ Σ x x − 1 Σ x x ) ( Σ x x − 1 σ x y − b ) = 0 \begin{aligned} E(y-\bar y)[\bar y-g(\boldsymbol{x})] &=E[y-\mu_{y}-\boldsymbol{\sigma^{\prime}}_{xy}\boldsymbol{\Sigma}_{xx}^{-1} (\boldsymbol{x-\mu_{x}})][\mu_{y}+\boldsymbol{\sigma}_{xy}^{\prime}\boldsymbol{\Sigma}_{xx}^{-1}(\boldsymbol{x-\mu_{x}})-a-\boldsymbol{b^{\prime}}(\boldsymbol{x-\mu_{x}})]\\ &=E[(y-\mu_{y})-\boldsymbol{\sigma}_{xy}^{\prime}\boldsymbol{\Sigma}_{xx}^{-1}(\boldsymbol{x-\mu_{x}})][(\boldsymbol{\sigma}_{xy}^{\prime}\boldsymbol{\Sigma}_{xx}^{-1}-\boldsymbol{b^{\prime}})(\boldsymbol{x-\mu_{x}})]\\ &=E[(y-\mu_{y})-\boldsymbol{\sigma}_{xy}^{\prime}\boldsymbol{\Sigma}_{xx}^{-1}(\boldsymbol{x-\mu_{x}})](\boldsymbol{x-\mu_{x}})^{\prime}(\boldsymbol{\Sigma}_{xx}^{-1}\boldsymbol{\sigma}_{xy}-\boldsymbol{b})\\ &=[Cov(y,x)-\boldsymbol{\sigma}_{xy}^{\prime}\boldsymbol{\Sigma}_{xx}^{-1}V(x)](\boldsymbol{\Sigma}_{xx}^{-1}\boldsymbol{\sigma}_{xy}-\boldsymbol{b})\\ &=(\boldsymbol{\sigma}_{xy}^{\prime}-\boldsymbol{\sigma}_{xy}^{\prime}\boldsymbol{\Sigma}_{xx}^{-1}\boldsymbol{\Sigma}_{xx})(\boldsymbol{\Sigma}_{xx}^{-1}\boldsymbol{\sigma}_{xy}-\boldsymbol{b})\\ &=0 \end{aligned} E(yyˉ)[yˉg(x)]=E[yμyσxyΣxx1(xμx)][μy+σxyΣxx1(xμx)ab(xμx)]=E[(yμy)σxyΣxx1(xμx)][(σxyΣxx1b)(xμx)]=E[(yμy)σxyΣxx1(xμx)](xμx)(Σxx1σxyb)=[Cov(y,x)σxyΣxx1V(x)](Σxx1σxyb)=(σxyσxyΣxx1Σxx)(Σxx1σxyb)=0
故当 g ( x ) = x ˉ g(x)=\bar x g(x)=xˉ时, E [ y − g ( x ) ] 2 E[y-g(x)]^{2} E[yg(x)]2达到最小值 E ( y − y ˉ ) 2 E(y-\bar y)^{2} E(yyˉ)2

  • 5
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
前言 第一章 矩阵代数  1.1 定义  1.2 矩阵的运算  1.3 行列式  1.4 矩阵的逆  1.5 矩阵的秩  1.6 特征值和特征向量  1.7 正定矩阵和非负定矩阵  1.8 特征值的极值问题 小结 附录1-1 SAS的应用 习题 第二章 随机向量  2.1 一元分布  2.2 多元分布  2.3 矩  2.4 随机向量的变换 *§2.5 特征函数 小结 附录2-1 SAS的应用 习题 第三章 多元正态分布  3.1 多元正态分布的定义  3.2 多元正态分布的性质  3.3 极大似然估计及估计量的性质  3.4 〖WTHX〗〖Akx-〗和/n-1)S的抽样分布 *§3.5 二次型分布 小结 附录3-1 SAS的应用 附录3-2 §3.2中若干性质的数学证明 习题 第四章 多元正态总体的统计推断  4.1 一元情形的回顾  4.2 单个总体均值的推断  4.3 单个总体均值分量间结构关系的检验  4.4 两个总体均值的比较推断  4.5 两个总体均值分量间结构关系的检验  4.6 多个总体均值的比较检验/多元方差分析)  4.7 总体相关系数的推断 小结 附录4-1 SAS的应用 附录4-2 霍特林T2统计量的导出 附录4-3 威尔克斯Λ统计量的基本性质 习题 第五章 判别分析  5.1 引言  5.2 距离判别  5.3 贝叶斯判别  5.4 费希尔判别 小结 附录5-1 SAS的应用 习题 第六章 聚类分析  6.1 引言  6.2 距离和相似系数  6.3 系统聚类法  6.4 动态聚类法 小结 附录6-1 SAS的应用 附录6-2 若干公式的推导 习题 第七章 主成分分析  7.1 引言  7.2 总体的主成分  7.3 样本的主成分 小结 附录7-1 SAS的应用 习题 第八章 因子分析  8.1 引言  8.2 因子模型  8.3 参数估计  8.4 因子旋转  8.5 因子得分 小结 附录8-1 SAS的应用 习题 第九章 典型相关分析  9.1 引言  9.2 总体典型相关  9.3 样本典型相关  9.4 典型相关系数的显著性检验 小结 附录9-1 SAS的应用 习题 附录一 习题参考答案 附录二 各类数值表 参考文献

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

OLSRR

随缘

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值