2021-08-29

Flink

第一章 Flink简介

1.1 初识Flink

Flink起源于Stratosphere项目,Stratosphere是在2010~2014年由3所地处柏林的大学和欧洲的一些其他的大学共同进行的研究项目,2014年4月Stratosphere的代码被复制并捐赠给了Apache软件基金会,参加这个孵化项目的初始成员是Stratosphere系统的核心开发人员,2014年12月,Flink一跃成为Apache软件基金会的顶级项目。
在德语中,Flink一词表示快速和灵巧,项目采用一只松鼠的彩色图案作为logo,这不仅是因为松鼠具有快速和灵巧的特点,还因为柏林的松鼠有一种迷人的红棕色,而Flink的松鼠logo拥有可爱的尾巴,尾巴的颜色与Apache软件基金会的logo颜色相呼应,也就是说,这是一只Apache风格的松鼠。

Flink Logo
Flink项目的理念是:“Apache Flink是为分布式、高性能、随时可用以及准确的流处理应用程序打造的开源流处理框架”。
Apache Flink是一个框架和分布式处理引擎,用于对无界和有界数据流进行有状态计算。Flink被设计在所有常见的集群环境中运行,以内存执行速度和任意规模来执行计算。

1.2 Flink的重要特点

1.2.1 事件驱动型(Event-driven)

事件驱动型应用是一类具有状态的应用,它从一个或多个事件流提取数据,并根据到来的事件触发计算、状态更新或其他外部动作。比较典型的就是以kafka为代表的消息队列几乎都是事件驱动型应用。
与之不同的就是SparkStreaming微批次,如图:

事件驱动型:

1.2.2 流与批的世界观

批处理的特点是有界、持久、大量,非常适合需要访问全套记录才能完成的计算工作,一般用于离线统计。
流处理的特点是无界、实时, 无需针对整个数据集执行操作,而是对通过系统传输的每个数据项执行操作,一般用于实时统计。
在spark的世界观中,一切都是由批次组成的,离线数据是一个大批次,而实时数据是由一个一个无限的小批次组成的。
而在flink的世界观中,一切都是由流组成的,离线数据是有界限的流,实时数据是一个没有界限的流,这就是所谓的有界流和无界流。
无界数据流:无界数据流有一个开始但是没有结束,它们不会在生成时终止并提供数据,必须连续处理无界流,也就是说必须在获取后立即处理event。对于无界数据流我们无法等待所有数据都到达,因为输入是无界的,并且在任何时间点都不会完成。处理无界数据通常要求以特定顺序(例如事件发生的顺序)获取event,以便能够推断结果完整性。
有界数据流:有界数据流有明确定义的开始和结束,可以在执行任何计算之前通过获取所有数据来处理有界流,处理有界流不需要有序获取,因为可以始终对有界数据集进行排序,有界流的处理也称为批处理。

这种以流为世界观的架构,获得的最大好处就是具有极低的延迟。

1.2.3 分层api

最底层级的抽象仅仅提供了有状态流,它将通过过程函数(Process Function)被嵌入到DataStream API中。底层过程函数(Process Function) 与 DataStream API 相集成,使其可以对某些特定的操作进行底层的抽象,它允许用户可以自由地处理来自一个或多个数据流的事件,并使用一致的容错的状态。除此之外,用户可以注册事件时间并处理时间回调,从而使程序可以处理复杂的计算。
实际上,大多数应用并不需要上述的底层抽象,而是针对核心API(Core APIs) 进行编程,比如DataStream API(有界或无界流数据)以及DataSet API(有界数据集)。这些API为数据处理提供了通用的构建模块,比如由用户定义的多种形式的转换(transformations),连接(joins),聚合(aggregations),窗口操作(windows)等等。DataSet API 为有界数据集提供了额外的支持,例如循环与迭代。这些API处理的数据类型以类(classes)的形式由各自的编程语言所表示。
Table API 是以表为中心的声明式编程,其中表可能会动态变化(在表达流数据时)。Table API遵循(扩展的)关系模型:表有二维数据结构(schema)(类似于关系数据库中的表),同时API提供可比较的操作,例如select、project、join、group-by、aggregate等。Table API程序声明式地定义了什么逻辑操作应该执行,而不是准确地确定这些操作代码的看上去如何。
尽管Table API可以通过多种类型的用户自定义函数(UDF)进行扩展,其仍不如核心API更具表达能力,但是使用起来却更加简洁(代码量更少)。除此之外,Table API程序在执行之前会经过内置优化器进行优化。
你可以在表与 DataStream/DataSet 之间无缝切换,以允许程序将 Table API 与 DataStream 以及 DataSet 混合使用。
Flink提供的最高层级的抽象是 SQL 。这一层抽象在语法与表达能力上与 Table API 类似,但是是以SQL查询表达式的形式表现程序。SQL抽象与Table API交互密切,同时SQL查询可以直接在Table API定义的表上执行。
目前Flink作为批处理还不是主流,不如Spark成熟,所以DataSet使用的并不是很多。Flink Table API和Flink SQL也并不完善,大多都由各大厂商自己定制。所以我们主要学习DataStream API的使用。实际上Flink作为最接近Google DataFlow模型的实现,是流批统一的观点,所以基本上使用DataStream就可以了。
Flink几大模块
Flink Table & SQL(还没开发完)
Flink Gelly(图计算)
Flink CEP(复杂事件处理)

第二章 快速上手

2.1 搭建maven工程 FlinkTutorial

2.1.1 pom文件

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>
    <groupId>com.atguigu.flink</groupId>
    <artifactId>FlinkTutorial</artifactId>
    <version>1.0-SNAPSHOT</version>

    <dependencies>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-scala_2.11</artifactId>
            <version>1.10.0</version>
        </dependency>
        <!-- https://mvnrepository.com/artifact/org.apache.flink/flink-streaming-scala -->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-streaming-scala_2.11</artifactId>
            <version>1.10.0</version>
        </dependency>
    </dependencies>

<build>
    <plugins>
    <!-- 该插件用于将Scala代码编译成class文件 -->
    <plugin>
        <groupId>net.alchim31.maven</groupId>
        <artifactId>scala-maven-plugin</artifactId>
        <version>3.4.6</version>
        <executions>
            <execution>
                <!-- 声明绑定到maven的compile阶段 -->
                <goals>
                    <goal>compile</goal>
                </goals>
            </execution>
        </executions>
    </plugin>
        <plugin>
            <groupId>org.apache.maven.plugins</groupId>
            <artifactId>maven-assembly-plugin</artifactId>
            <version>3.0.0</version>
            <configuration>
                <descriptorRefs>
                    <descriptorRef>jar-with-dependencies</descriptorRef>
                </descriptorRefs>
            </configuration>
            <executions>
                <execution>
                    <id>make-assembly</id>
                    <phase>package</phase>
                    <goals>
                        <goal>single</goal>
                    </goals>
                </execution>
            </executions>
        </plugin>
    </plugins>
</build>
</project>

2.1.2 添加scala框架 和 scala文件夹

在这里插入图片描述

2.2 批处理wordcount

src/main/scala/com.atguigu.wc/WordCount.scala

object WordCount {
  def main(args: Array[String]): Unit = {
    // 创建执行环境
    val env = ExecutionEnvironment.getExecutionEnvironment
    // 从文件中读取数据
    val inputPath = "D:\\Projects\\BigData\\TestWC1\\src\\main\\resources\\hello.txt"
    val inputDS: DataSet[String] = env.readTextFile(inputPath)
    // 分词之后,对单词进行groupby分组,然后用sum进行聚合
    val wordCountDS: AggregateDataSet[(String, Int)] = inputDS.flatMap(_.split(" ")).map((_, 1)).groupBy(0).sum(1)

    // 打印输出
    wordCountDS.print()
  }
}

注意:Flink程序支持java和scala两种语言,本课程中以scala语言为主。在引入包中,有java和scala两种包时注意要使用scala的包。

2.3 流处理 wordcount

src/main/scala/com.atguigu.wc/StreamWordCount.scala

object StreamWordCount {
  def main(args: Array[String]): Unit = {
    // 从外部命令中获取参数
    val params: ParameterTool =  ParameterTool.fromArgs(args)
    val host: String = params.get("host")
    val port: Int = params.getInt("port")

    // 创建流处理环境
    val env = StreamExecutionEnvironment.getExecutionEnvironment
    // 接收socket文本流
    val textDstream: DataStream[String] = env.socketTextStream(host, port)

    // flatMap和Map需要引用的隐式转换
    import org.apache.flink.api.scala._
    val dataStream: DataStream[(String, Int)] = textDstream.flatMap(_.split("\\s")).filter(_.nonEmpty).map((_, 1)).keyBy(0).sum(1)

    dataStream.print().setParallelism(1)

    // 启动executor,执行任务
    env.execute("Socket stream word count")
  }
}

测试——在linux系统中用netcat命令进行发送测试。
nc -lk 7777

第三章 Flink部署

3.1 Standalone模式

3.1.1 安装

解压缩 flink-1.10.0-bin-scala_2.11.tgz,进入conf目录中。
1)修改 flink/conf/flink-conf.yaml 文件:

2)修改 /conf/slaves文件:

3)分发给另外两台机子:

4)启动:

访问http://localhost:8081可以对flink集群和任务进行监控管理。

3.1.2 提交任务

  1. 准备数据文件

  2. 把含数据文件的文件夹,分发到taskmanage 机器中

由于读取数据是从本地磁盘读取,实际任务会被分发到taskmanage的机器中,所以要把目标文件分发。

  1. 执行程序
    ./flink run -c com.atguigu.wc.StreamWordCount –p 2 FlinkTutorial-1.0-SNAPSHOT-jar-with-dependencies.jar --host lcoalhost –port 7777

  2. 到目标文件夹中查看计算结果
    注意:计算结果根据会保存到taskmanage的机器下,不会在jobmanage下。

  3. 在webui控制台查看计算过程

3.2 Yarn模式

以Yarn模式部署Flink任务时,要求Flink是有Hadoop支持的版本,Hadoop环境需要保证版本在2.2以上,并且集群中安装有HDFS服务。

3.2.1 Flink on Yarn

Flink提供了两种在yarn上运行的模式,分别为Session-Cluster和Per-Job-Cluster模式。
1)Session-cluster 模式:

Session-Cluster模式需要先启动集群,然后再提交作业,接着会向yarn申请一块空间后,资源永远保持不变。如果资源满了,下一个作业就无法提交,只能等到yarn中的其中一个作业执行完成后,释放了资源,下个作业才会正常提交。所有作业共享Dispatcher和ResourceManager;共享资源;适合规模小执行时间短的作业。
在yarn中初始化一个flink集群,开辟指定的资源,以后提交任务都向这里提交。这个flink集群会常驻在yarn集群中,除非手工停止。
2)Per-Job-Cluster 模式:

一个Job会对应一个集群,每提交一个作业会根据自身的情况,都会单独向yarn申请资源,直到作业执行完成,一个作业的失败与否并不会影响下一个作业的正常提交和运行。独享Dispatcher和ResourceManager,按需接受资源申请;适合规模大长时间运行的作业。
每次提交都会创建一个新的flink集群,任务之间互相独立,互不影响,方便管理。任务执行完成之后创建的集群也会消失。
3.2.2 Session Cluster
1)启动hadoop集群(略)
2)启动yarn-session

./yarn-session.sh -n 2 -s 2 -jm 1024 -tm 1024 -nm test -d
其中:
-n(–container):TaskManager的数量。
-s(–slots): 每个TaskManager的slot数量,默认一个slot一个core,默认每个taskmanager的slot的个数为1,有时可以多一些taskmanager,做冗余。
-jm:JobManager的内存(单位MB)。
-tm:每个taskmanager的内存(单位MB)。
-nm:yarn 的appName(现在yarn的ui上的名字)。
-d:后台执行。

3)执行任务
./flink run -c com.atguigu.wc.StreamWordCount FlinkTutorial-1.0-SNAPSHOT-jar-with-dependencies.jar --host lcoalhost –port 7777

4)去yarn控制台查看任务状态

5)取消yarn-session
yarn application --kill application_1577588252906_0001

3.2.2 Per Job Cluster

1)启动hadoop集群(略)
2)不启动yarn-session,直接执行job
./flink run –m yarn-cluster -c com.atguigu.wc.StreamWordCount FlinkTutorial-1.0-SNAPSHOT-jar-with-dependencies.jar --host lcoalhost –port 7777

3.3 Kubernetes部署

容器化部署时目前业界很流行的一项技术,基于Docker镜像运行能够让用户更加方便地对应用进行管理和运维。容器管理工具中最为流行的就是Kubernetes(k8s),而Flink也在最近的版本中支持了k8s部署模式。
1)搭建Kubernetes集群(略)
2)配置各组件的yaml文件
在k8s上构建Flink Session Cluster,需要将Flink集群的组件对应的docker镜像分别在k8s上启动,包括JobManager、TaskManager、JobManagerService三个镜像服务。每个镜像服务都可以从中央镜像仓库中获取。
3)启动Flink Session Cluster
// 启动jobmanager-service 服务
kubectl create -f jobmanager-service.yaml
// 启动jobmanager-deployment服务
kubectl create -f jobmanager-deployment.yaml
// 启动taskmanager-deployment服务
kubectl create -f taskmanager-deployment.yaml
4)访问Flink UI页面
集群启动后,就可以通过JobManagerServicers中配置的WebUI端口,用浏览器输入以下url来访问Flink UI页面了:
http://{JobManagerHost:Port}/api/v1/namespaces/default/services/flink-jobmanager:ui/proxy

第四章 Flink运行架构

4.1 Flink运行时的组件

Flink运行时架构主要包括四个不同的组件,它们会在运行流处理应用程序时协同工作:作业管理器(JobManager)、资源管理器(ResourceManager)、任务管理器(TaskManager),以及分发器(Dispatcher)。因为Flink是用Java和Scala实现的,所以所有组件都会运行在Java虚拟机上。每个组件的职责如下:
作业管理器(JobManager)
控制一个应用程序执行的主进程,也就是说,每个应用程序都会被一个不同的JobManager所控制执行。JobManager会先接收到要执行的应用程序,这个应用程序会包括:作业图(JobGraph)、逻辑数据流图(logical dataflow graph)和打包了所有的类、库和其它资源的JAR包。JobManager会把JobGraph转换成一个物理层面的数据流图,这个图被叫做“执行图”(ExecutionGraph),包含了所有可以并发执行的任务。JobManager会向资源管理器(ResourceManager)请求执行任务必要的资源,也就是任务管理器(TaskManager)上的插槽(slot)。一旦它获取到了足够的资源,就会将执行图分发到真正运行它们的TaskManager上。而在运行过程中,JobManager会负责所有需要中央协调的操作,比如说检查点(checkpoints)的协调。
资源管理器(ResourceManager)
主要负责管理任务管理器(TaskManager)的插槽(slot),TaskManger插槽是Flink中定义的处理资源单元。Flink为不同的环境和资源管理工具提供了不同资源管理器,比如YARN、Mesos、K8s,以及standalone部署。当JobManager申请插槽资源时,ResourceManager会将有空闲插槽的TaskManager分配给JobManager。如果ResourceManager没有足够的插槽来满足JobManager的请求,它还可以向资源提供平台发起会话,以提供启动TaskManager进程的容器。另外,ResourceManager还负责终止空闲的TaskManager,释放计算资源。
任务管理器(TaskManager)
Flink中的工作进程。通常在Flink中会有多个TaskManager运行,每一个TaskManager都包含了一定数量的插槽(slots)。插槽的数量限制了TaskManager能够执行的任务数量。启动之后,TaskManager会向资源管理器注册它的插槽;收到资源管理器的指令后,TaskManager就会将一个或者多个插槽提供给JobManager调用。JobManager就可以向插槽分配任务(tasks)来执行了。在执行过程中,一个TaskManager可以跟其它运行同一应用程序的TaskManager交换数据。
分发器(Dispatcher)
可以跨作业运行,它为应用提交提供了REST接口。当一个应用被提交执行时,分发器就会启动并将应用移交给一个JobManager。由于是REST接口,所以Dispatcher可以作为集群的一个HTTP接入点,这样就能够不受防火墙阻挡。Dispatcher也会启动一个Web UI,用来方便地展示和监控作业执行的信息。Dispatcher在架构中可能并不是必需的,这取决于应用提交运行的方式。

4.2 任务提交流程

我们来看看当一个应用提交执行时,Flink的各个组件是如何交互协作的:

图 任务提交和组件交互流程
在这里插入图片描述

上图是从一个较为高层级的视角,来看应用中各组件的交互协作。如果部署的集群环境不同(例如YARN,Mesos,Kubernetes,standalone等),其中一些步骤可以被省略,或是有些组件会运行在同一个JVM进程中。
具体地,如果我们将Flink集群部署到YARN上,那么就会有如下的提交流程:
在这里插入图片描述

图 Yarn模式任务提交流程
Flink任务提交后,Client向HDFS上传Flink的Jar包和配置,之后向Yarn ResourceManager提交任务,ResourceManager分配Container资源并通知对应的NodeManager启动ApplicationMaster,ApplicationMaster启动后加载Flink的Jar包和配置构建环境,然后启动JobManager,之后ApplicationMaster向ResourceManager申请资源启动TaskManager,ResourceManager分配Container资源后,由ApplicationMaster通知资源所在节点的NodeManager启动TaskManager,NodeManager加载Flink的Jar包和配置构建环境并启动TaskManager,TaskManager启动后向JobManager发送心跳包,并等待JobManager向其分配任务。

4.3 任务调度原理

在这里插入图片描述

图 任务调度原理
客户端不是运行时和程序执行的一部分,但它用于准备并发送dataflow(JobGraph)给Master(JobManager),然后,客户端断开连接或者维持连接以等待接收计算结果。

当 Flink 集群启动后,首先会启动一个 JobManger 和一个或多个的 TaskManager。由 Client 提交任务给 JobManager,JobManager 再调度任务到各个 TaskManager 去执行,然后 TaskManager 将心跳和统计信息汇报给 JobManager。TaskManager 之间以流的形式进行数据的传输。上述三者均为独立的 JVM 进程。
Client 为提交 Job 的客户端,可以是运行在任何机器上(与 JobManager 环境连通即可)。提交 Job 后,Client 可以结束进程(Streaming的任务),也可以不结束并等待结果返回。
JobManager 主要负责调度 Job 并协调 Task 做 checkpoint,职责上很像 Storm 的 Nimbus。从 Client 处接收到 Job 和 JAR 包等资源后,会生成优化后的执行计划,并以 Task 的单元调度到各个 TaskManager 去执行。
TaskManager 在启动的时候就设置好了槽位数(Slot),每个 slot 能启动一个 Task,Task 为线程。从 JobManager 处接收需要部署的 Task,部署启动后,与自己的上游建立 Netty 连接,接收数据并处理。

4.3.1 TaskManger与Slots

Flink中每一个worker(TaskManager)都是一个JVM进程,它可能会在独立的线程上执行一个或多个subtask。为了控制一个worker能接收多少个task,worker通过task slot来进行控制(一个worker至少有一个task slot)。
每个task slot表示TaskManager拥有资源的一个固定大小的子集。假如一个TaskManager有三个slot,那么它会将其管理的内存分成三份给各个slot。资源slot化意味着一个subtask将不需要跟来自其他job的subtask竞争被管理的内存,取而代之的是它将拥有一定数量的内存储备。需要注意的是,这里不会涉及到CPU的隔离,slot目前仅仅用来隔离task的受管理的内存。
通过调整task slot的数量,允许用户定义subtask之间如何互相隔离。如果一个TaskManager一个slot,那将意味着每个task group运行在独立的JVM中(该JVM可能是通过一个特定的容器启动的),而一个TaskManager多个slot意味着更多的subtask可以共享同一个JVM。而在同一个JVM进程中的task将共享TCP连接(基于多路复用)和心跳消息。它们也可能共享数据集和数据结构,因此这减少了每个task的负载。
在这里插入图片描述

图 TaskManager与Slot
在这里插入图片描述

图 子任务共享Slot

默认情况下,Flink允许子任务共享slot,即使它们是不同任务的子任务(前提是它们来自同一个job)。 这样的结果是,一个slot可以保存作业的整个管道。
Task Slot是静态的概念,是指TaskManager具有的并发执行能力,可以通过参数taskmanager.numberOfTaskSlots进行配置;而并行度parallelism是动态概念,即TaskManager运行程序时实际使用的并发能力,可以通过参数parallelism.default进行配置。
也就是说,假设一共有3个TaskManager,每一个TaskManager中的分配3个TaskSlot,也就是每个TaskManager可以接收3个task,一共9个TaskSlot,如果我们设置parallelism.default=1,即运行程序默认的并行度为1,9个TaskSlot只用了1个,有8个空闲,因此,设置合适的并行度才能提高效率。

4.3.2 程序与数据流(DataFlow)

在这里插入图片描述

所有的Flink程序都是由三部分组成的: Source 、Transformation和Sink。
Source负责读取数据源,Transformation利用各种算子进行处理加工,Sink负责输出。
在运行时,Flink上运行的程序会被映射成“逻辑数据流”(dataflows),它包含了这三部分。每一个dataflow以一个或多个sources开始以一个或多个sinks结束。dataflow类似于任意的有向无环图(DAG)。在大部分情况下,程序中的转换运算(transformations)跟dataflow中的算子(operator)是一一对应的关系,但有时候,一个transformation可能对应多个operator。

图 程序与数据流

4.3.3 执行图(ExecutionGraph)

由Flink程序直接映射成的数据流图是StreamGraph,也被称为逻辑流图,因为它们表示的是计算逻辑的高级视图。为了执行一个流处理程序,Flink需要将逻辑流图转换为物理数据流图(也叫执行图),详细说明程序的执行方式。

Flink 中的执行图可以分成四层:StreamGraph -> JobGraph -> ExecutionGraph -> 物理执行图。
StreamGraph:是根据用户通过 Stream API 编写的代码生成的最初的图。用来表示程序的拓扑结构。
JobGraph:StreamGraph经过优化后生成了 JobGraph,提交给 JobManager 的数据结构。主要的优化为,将多个符合条件的节点 chain 在一起作为一个节点,这样可以减少数据在节点之间流动所需要的序列化/反序列化/传输消耗。
ExecutionGraph:JobManager 根据 JobGraph 生成ExecutionGraph。ExecutionGraph是JobGraph的并行化版本,是调度层最核心的数据结构。
物理执行图:JobManager 根据 ExecutionGraph 对 Job 进行调度后,在各个TaskManager 上部署 Task 后形成的“图”,并不是一个具体的数据结构。
在这里插入图片描述

4.3.4 并行度(Parallelism)

Flink程序的执行具有并行、分布式的特性。
在执行过程中,一个流(stream)包含一个或多个分区(stream partition),而每一个算子(operator)可以包含一个或多个子任务(operator subtask),这些子任务在不同的线程、不同的物理机或不同的容器中彼此互不依赖地执行。
一个特定算子的子任务(subtask)的个数被称之为其并行度(parallelism)。一般情况下,一个流程序的并行度,可以认为就是其所有算子中最大的并行度。一个程序中,不同的算子可能具有不同的并行度。
在这里插入图片描述

图 并行数据流
Stream在算子之间传输数据的形式可以是one-to-one(forwarding)的模式也可以是redistributing的模式,具体是哪一种形式,取决于算子的种类。
One-to-one:stream(比如在source和map operator之间)维护着分区以及元素的顺序。那意味着map 算子的子任务看到的元素的个数以及顺序跟source 算子的子任务生产的元素的个数、顺序相同,map、fliter、flatMap等算子都是one-to-one的对应关系。
类似于spark中的窄依赖
Redistributing:stream(map()跟keyBy/window之间或者keyBy/window跟sink之间)的分区会发生改变。每一个算子的子任务依据所选择的transformation发送数据到不同的目标任务。例如,keyBy() 基于hashCode重分区、broadcast和rebalance会随机重新分区,这些算子都会引起redistribute过程,而redistribute过程就类似于Spark中的shuffle过程。
类似于spark中的宽依赖

4.3.5 任务链(Operator Chains)

相同并行度的one to one操作,Flink这样相连的算子链接在一起形成一个task,原来的算子成为里面的一部分。将算子链接成task是非常有效的优化:它能减少线程之间的切换和基于缓存区的数据交换,在减少时延的同时提升吞吐量。链接的行为可以在编程API中进行指定。

在这里插入图片描述

图 task与operator chains

第五章 Flink 流处理API

5.1 Environment

5.1.1 getExecutionEnvironment

创建一个执行环境,表示当前执行程序的上下文。 如果程序是独立调用的,则此方法返回本地执行环境;如果从命令行客户端调用程序以提交到集群,则此方法返回此集群的执行环境,也就是说,getExecutionEnvironment会根据查询运行的方式决定返回什么样的运行环境,是最常用的一种创建执行环境的方式。

val env: ExecutionEnvironment = ExecutionEnvironment.getExecutionEnvironment
val env = StreamExecutionEnvironment.getExecutionEnvironment

如果没有设置并行度,会以flink-conf.yaml中的配置为准,默认是1。

5.1.2 createLocalEnvironment

返回本地执行环境,需要在调用时指定默认的并行度。

val env = StreamExecutionEnvironment.createLocalEnvironment(1)

5.1.3 createRemoteEnvironment

返回集群执行环境,将Jar提交到远程服务器。需要在调用时指定JobManager的IP和端口号,并指定要在集群中运行的Jar包。

val env = ExecutionEnvironment.createRemoteEnvironment("jobmanage-hostname", 6123,"YOURPATH//wordcount.jar")

5.2 Source

5.2.1 从集合读取数据

// 定义样例类,传感器id,时间戳,温度

case class SensorReading(id: String, timestamp: Long, temperature: Double)

object Sensor {
  def main(args: Array[String]): Unit = {
    val env = StreamExecutionEnvironment.getExecutionEnvironment
    val stream1 = env
      .fromCollection(List(
        SensorReading("sensor_1", 1547718199, 35.8),
        SensorReading("sensor_6", 1547718201, 15.4),
        SensorReading("sensor_7", 1547718202, 6.7),
        SensorReading("sensor_10", 1547718205, 38.1)
      ))

    stream1.print("stream1:").setParallelism(1)

    env.execute()
  }
}

5.2.2 从文件读取数据

val stream2 = env.readTextFile("YOUR_FILE_PATH")

5.2.3 以kafka消息队列的数据作为来源

需要引入kafka连接器的依赖:

pom.xml
<!-- https://mvnrepository.com/artifact/org.apache.flink/flink-connector-kafka-0.11 -->
<dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-connector-kafka-0.11_2.11</artifactId>
    <version>1.10.0</version>
</dependency>

具体代码如下:

val properties = new Properties()
properties.setProperty("bootstrap.servers", "localhost:9092")
properties.setProperty("group.id", "consumer-group")
properties.setProperty("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer")
properties.setProperty("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer")
properties.setProperty("auto.offset.reset", "latest")

val stream3 = env.addSource(new FlinkKafkaConsumer011[String]("sensor", new SimpleStringSchema(), properties))

5.2.4 自定义Source

除了以上的source数据来源,我们还可以自定义source。需要做的,只是传入一个SourceFunction就可以。具体调用如下:
val stream4 = env.addSource( new MySensorSource() )
我们希望可以随机生成传感器数据,MySensorSource具体的代码实现如下:

class MySensorSource extends SourceFunction[SensorReading]{

// flag: 表示数据源是否还在正常运行
var running: Boolean = true

override def cancel(): Unit = {
running = false
}

override def run(ctx: SourceFunction.SourceContext[SensorReading]): Unit = {
// 初始化一个随机数发生器
val rand = new Random()

var curTemp = 1.to(10).map(
i => ( "sensor_" + i, 65 + rand.nextGaussian() * 20 )
)

while(running){
// 更新温度值
curTemp = curTemp.map(
t => (t._1, t._2 + rand.nextGaussian() )
)
// 获取当前时间戳
val curTime = System.currentTimeMillis()

curTemp.foreach(
t => ctx.collect(SensorReading(t._1, curTime, t._2))
)
Thread.sleep(100)
}
}
}

5.3 Transform

转换算子

5.3.1 map

val streamMap = stream.map { x => x * 2 }

5.3.2 flatMap

flatMap的函数签名:def flatMap[A,B](as: List[A])(f: A ⇒ List[B]): List[B]
例如: flatMap(List(1,2,3))(i ⇒ List(i,i))
结果是List(1,1,2,2,3,3),
而List(“a b”, “c d”).flatMap(line ⇒ line.split(" "))
结果是List(a, b, c, d)。

val streamFlatMap = stream.flatMap{
    x => x.split(" ")
}

5.3.3 Filter

val streamFilter = stream.filter{
    x => x == 1
}

5.3.4 KeyBy

DataStream → KeyedStream:逻辑地将一个流拆分成不相交的分区,每个分区包含具有相同key的元素,在内部以hash的形式实现的。

5.3.5 滚动聚合算子(Rolling Aggregation)

这些算子可以针对KeyedStream的每一个支流做聚合。
sum()
min()
max()
minBy()
maxBy()

5.3.6 Reduce

KeyedStream → DataStream:一个分组数据流的聚合操作,合并当前的元素和上次聚合的结果,产生一个新的值,返回的流中包含每一次聚合的结果,而不是只返回最后一次聚合的最终结果。

val stream2 = env.readTextFile("YOUR_PATH\\sensor.txt")
  .map( data => {
    val dataArray = data.split(",")
    SensorReading(dataArray(0).trim, dataArray(1).trim.toLong, dataArray(2).trim.toDouble)
  })
  .keyBy("id")
  .reduce( (x, y) => SensorReading(x.id, x.timestamp + 1, y.temperature) )

5.3.7 Split 和 Select

Split
在这里插入图片描述

图 Split
DataStream → SplitStream:根据某些特征把一个DataStream拆分成两个或者多个DataStream。
Select
在这里插入图片描述

图 Select
SplitStream→DataStream:从一个SplitStream中获取一个或者多个DataStream。
需求:传感器数据按照温度高低(以30度为界),拆分成两个流。

val splitStream = stream2
  .split( sensorData => {
    if (sensorData.temperature > 30) Seq("high") else Seq("low")
  } )

val high = splitStream.select("high")
val low = splitStream.select("low")
val all = splitStream.select("high", "low")

5.3.8 Connect和 CoMap

在这里插入图片描述

图 Connect算子
DataStream,DataStream → ConnectedStreams:连接两个保持他们类型的数据流,两个数据流被Connect之后,只是被放在了一个同一个流中,内部依然保持各自的数据和形式不发生任何变化,两个流相互独立。
CoMap,CoFlatMap
在这里插入图片描述

图 CoMap/CoFlatMap
ConnectedStreams → DataStream:作用于ConnectedStreams上,功能与map和flatMap一样,对ConnectedStreams中的每一个Stream分别进行map和flatMap处理。

val warning = high.map( sensorData => (sensorData.id, sensorData.temperature) )
val connected = warning.connect(low)

val coMap = connected.map(
    warningData => (warningData._1, warningData._2, "warning"),
    lowData => (lowData.id, "healthy")
)
 

5.3.9 Union

在这里插入图片描述

图 Union
DataStream → DataStream:对两个或者两个以上的DataStream进行union操作,产生一个包含所有DataStream元素的新DataStream。

//合并以后打印
val unionStream: DataStream[StartUpLog] = appStoreStream.union(otherStream)
unionStream.print("union:::")

Connect与 Union 区别:
1. Union之前两个流的类型必须是一样,Connect可以不一样,在之后的coMap中再去调整成为一样的。
2. Connect只能操作两个流,Union可以操作多个。

5.4 支持的数据类型

Flink流应用程序处理的是以数据对象表示的事件流。所以在Flink内部,我们需要能够处理这些对象。它们需要被序列化和反序列化,以便通过网络传送它们;或者从状态后端、检查点和保存点读取它们。为了有效地做到这一点,Flink需要明确知道应用程序所处理的数据类型。Flink使用类型信息的概念来表示数据类型,并为每个数据类型生成特定的序列化器、反序列化器和比较器。
Flink还具有一个类型提取系统,该系统分析函数的输入和返回类型,以自动获取类型信息,从而获得序列化器和反序列化器。但是,在某些情况下,例如lambda函数或泛型类型,需要显式地提供类型信息,才能使应用程序正常工作或提高其性能。
Flink支持Java和Scala中所有常见数据类型。使用最广泛的类型有以下几种。

5.4.1 基础数据类型

Flink支持所有的Java和Scala基础数据类型,Int, Double, Long, String, …​

val numbers: DataStream[Long] = env.fromElements(1L, 2L, 3L, 4L)
numbers.map( n => n + 1 )

5.4.2 Java和Scala元组(Tuples)

val persons: DataStream[(String, Integer)] = env.fromElements( 
("Adam", 17), 
("Sarah", 23) ) 
persons.filter(p => p._2 > 18)

5.4.3 Scala样例类(case classes)

case class Person(name: String, age: Int) 
val persons: DataStream[Person] = env.fromElements(
Person("Adam", 17), 
Person("Sarah", 23) )
persons.filter(p => p.age > 18)
5.4.4 Java简单对象(POJOs)
public class Person {
public String name;
public int age;
  public Person() {}
  public Person(String name, int age) { 
this.name = name;      
this.age = age;  
}
}
DataStream<Person> persons = env.fromElements(   
new Person("Alex", 42),   
new Person("Wendy", 23));

5.4.5 其它(Arrays, Lists, Maps, Enums, 等等)

Flink对Java和Scala中的一些特殊目的的类型也都是支持的,比如Java的ArrayList,HashMap,Enum等等。

5.5 实现UDF函数——更细粒度的控制流

5.5.1 函数类(Function Classes)

Flink暴露了所有udf函数的接口(实现方式为接口或者抽象类)。例如MapFunction, FilterFunction, ProcessFunction等等。
下面例子实现了FilterFunction接口:

class FilterFilter extends FilterFunction[String] {
      override def filter(value: String): Boolean = {
        value.contains("flink")
      }
}
val flinkTweets = tweets.filter(new FlinkFilter)
还可以将函数实现成匿名类
val flinkTweets = tweets.filter(
new RichFilterFunction[String] {
override def filter(value: String): Boolean = {
value.contains("flink")
}
}
)

我们filter的字符串"flink"还可以当作参数传进去。

val tweets: DataStream[String] = ...
val flinkTweets = tweets.filter(new KeywordFilter("flink"))

class KeywordFilter(keyWord: String) extends FilterFunction[String] {
override def filter(value: String): Boolean = {
value.contains(keyWord)
}
}

5.5.2 匿名函数(Lambda Functions)

val tweets: DataStream[String] = ...
val flinkTweets = tweets.filter(_.contains("flink"))

5.5.3 富函数(Rich Functions)

“富函数”是DataStream API提供的一个函数类的接口,所有Flink函数类都有其Rich版本。它与常规函数的不同在于,可以获取运行环境的上下文,并拥有一些生命周期方法,所以可以实现更复杂的功能。
RichMapFunction
RichFlatMapFunction
RichFilterFunction
…​
Rich Function有一个生命周期的概念。典型的生命周期方法有:
open()方法是rich function的初始化方法,当一个算子例如map或者filter被调用之前open()会被调用。
close()方法是生命周期中的最后一个调用的方法,做一些清理工作。
getRuntimeContext()方法提供了函数的RuntimeContext的一些信息,例如函数执行的并行度,任务的名字,以及state状态

class MyFlatMap extends RichFlatMapFunction[Int, (Int, Int)] {
var subTaskIndex = 0

override def open(configuration: Configuration): Unit = {
subTaskIndex = getRuntimeContext.getIndexOfThisSubtask
// 以下可以做一些初始化工作,例如建立一个和HDFS的连接
}

override def flatMap(in: Int, out: Collector[(Int, Int)]): Unit = {
if (in % 2 == subTaskIndex) {
out.collect((subTaskIndex, in))
}
}

override def close(): Unit = {
// 以下做一些清理工作,例如断开和HDFS的连接。
}
}

5.6 Sink

Flink没有类似于spark中foreach方法,让用户进行迭代的操作。虽有对外的输出操作都要利用Sink完成。最后通过类似如下方式完成整个任务最终输出操作。
stream.addSink(new MySink(xxxx))
官方提供了一部分的框架的sink。除此以外,需要用户自定义实现sink。

5.6.1 Kafka

pom.xml
<!-- https://mvnrepository.com/artifact/org.apache.flink/flink-connector-kafka-0.11 -->
<dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-connector-kafka-0.11_2.11</artifactId>
    <version>1.10.0</version>
</dependency>

主函数中添加sink:

val union = high.union(low).map(_.temperature.toString)

union.addSink(new FlinkKafkaProducer011[String]("localhost:9092", "test", new SimpleStringSchema()))

5.6.2 Redis

pom.xml
<!-- https://mvnrepository.com/artifact/org.apache.bahir/flink-connector-redis -->
<dependency>
    <groupId>org.apache.bahir</groupId>
    <artifactId>flink-connector-redis_2.11</artifactId>
    <version>1.0</version>
</dependency>

定义一个redis的mapper类,用于定义保存到redis时调用的命令:

class MyRedisMapper extends RedisMapper[SensorReading]{
  override def getCommandDescription: RedisCommandDescription = {
    new RedisCommandDescription(RedisCommand.HSET, "sensor_temperature")
  }
  override def getValueFromData(t: SensorReading): String = t.temperature.toString

  override def getKeyFromData(t: SensorReading): String = t.id
}

在主函数中调用:

val conf = new FlinkJedisPoolConfig.Builder().setHost("localhost").setPort(6379).build()
dataStream.addSink( new RedisSink[SensorReading](conf, new MyRedisMapper) )

5.6.3 Elasticsearch

pom.xml
<dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-connector-elasticsearch6_2.11</artifactId>
    <version>1.10.0</version>
</dependency>

在主函数中调用:

val httpHosts = new util.ArrayList[HttpHost]()
httpHosts.add(new HttpHost("localhost", 9200))

val esSinkBuilder = new ElasticsearchSink.Builder[SensorReading]( httpHosts, new ElasticsearchSinkFunction[SensorReading] {
  override def process(t: SensorReading, runtimeContext: RuntimeContext, requestIndexer: RequestIndexer): Unit = {
    println("saving data: " + t)
    val json = new util.HashMap[String, String]()
    json.put("data", t.toString)
    val indexRequest = Requests.indexRequest().index("sensor").`type`("readingData").source(json)
    requestIndexer.add(indexRequest)
    println("saved successfully")
  }
} )
dataStream.addSink( esSinkBuilder.build() )

5.6.4 JDBC 自定义sink

<!-- https://mvnrepository.com/artifact/mysql/mysql-connector-java -->
<dependency>
    <groupId>mysql</groupId>
    <artifactId>mysql-connector-java</artifactId>
    <version>5.1.44</version>
</dependency>

添加MyJdbcSink

class MyJdbcSink() extends RichSinkFunction[SensorReading]{
  var conn: Connection = _
  var insertStmt: PreparedStatement = _
  var updateStmt: PreparedStatement = _

  // open 主要是创建连接
  override def open(parameters: Configuration): Unit = {
    super.open(parameters)

    conn = DriverManager.getConnection("jdbc:mysql://localhost:3306/test", "root", "123456")
    insertStmt = conn.prepareStatement("INSERT INTO temperatures (sensor, temp) VALUES (?, ?)")
    updateStmt = conn.prepareStatement("UPDATE temperatures SET temp = ? WHERE sensor = ?")
  }
  // 调用连接,执行sql
  override def invoke(value: SensorReading, context: SinkFunction.Context[_]): Unit = {
    
updateStmt.setDouble(1, value.temperature)
    updateStmt.setString(2, value.id)
    updateStmt.execute()

    if (updateStmt.getUpdateCount == 0) {
      insertStmt.setString(1, value.id)
      insertStmt.setDouble(2, value.temperature)
      insertStmt.execute()
    }
  }

  override def close(): Unit = {
    insertStmt.close()
    updateStmt.close()
    conn.close()
  }
}

在main方法中增加,把明细保存到mysql中

dataStream.addSink(new MyJdbcSink())

第六章 Flink中的Window

6.1 Window

6.1.1 Window概述

streaming流式计算是一种被设计用于处理无限数据集的数据处理引擎,而无限数据集是指一种不断增长的本质上无限的数据集,而window是一种切割无限数据为有限块进行处理的手段。
Window是无限数据流处理的核心,Window将一个无限的stream拆分成有限大小的”buckets”桶,我们可以在这些桶上做计算操作。

6.1.2 Window类型

Window可以分成两类:
CountWindow:按照指定的数据条数生成一个Window,与时间无关。
TimeWindow:按照时间生成Window。
对于TimeWindow,可以根据窗口实现原理的不同分成三类:滚动窗口(Tumbling Window)、滑动窗口(Sliding Window)和会话窗口(Session Window)。
1.滚动窗口(Tumbling Windows)
将数据依据固定的窗口长度对数据进行切片。
特点:时间对齐,窗口长度固定,没有重叠。
滚动窗口分配器将每个元素分配到一个指定窗口大小的窗口中,滚动窗口有一个固定的大小,并且不会出现重叠。例如:如果你指定了一个5分钟大小的滚动窗口,窗口的创建如下图所示:

图 滚动窗口
适用场景:适合做BI统计等(做每个时间段的聚合计算)。
2.滑动窗口(Sliding Windows)
滑动窗口是固定窗口的更广义的一种形式,滑动窗口由固定的窗口长度和滑动间隔组成。
特点:时间对齐,窗口长度固定,可以有重叠。
滑动窗口分配器将元素分配到固定长度的窗口中,与滚动窗口类似,窗口的大小由窗口大小参数来配置,另一个窗口滑动参数控制滑动窗口开始的频率。因此,滑动窗口如果滑动参数小于窗口大小的话,窗口是可以重叠的,在这种情况下元素会被分配到多个窗口中。
例如,你有10分钟的窗口和5分钟的滑动,那么每个窗口中5分钟的窗口里包含着上个10分钟产生的数据,如下图所示:

图 滑动窗口
适用场景:对最近一个时间段内的统计(求某接口最近5min的失败率来决定是否要报警)。
3.会话窗口(Session Windows)
由一系列事件组合一个指定时间长度的timeout间隙组成,类似于web应用的session,也就是一段时间没有接收到新数据就会生成新的窗口。
特点:时间无对齐。
session窗口分配器通过session活动来对元素进行分组,session窗口跟滚动窗口和滑动窗口相比,不会有重叠和固定的开始时间和结束时间的情况,相反,当它在一个固定的时间周期内不再收到元素,即非活动间隔产生,那个这个窗口就会关闭。一个session窗口通过一个session间隔来配置,这个session间隔定义了非活跃周期的长度,当这个非活跃周期产生,那么当前的session将关闭并且后续的元素将被分配到新的session窗口中去。

图 会话窗口

6.2 Window API

6.2.1 TimeWindow

TimeWindow是将指定时间范围内的所有数据组成一个window,一次对一个window里面的所有数据进行计算。
1.滚动窗口
Flink默认的时间窗口根据Processing Time 进行窗口的划分,将Flink获取到的数据根据进入Flink的时间划分到不同的窗口中。

val minTempPerWindow = dataStream
.map(r => (r.id, r.temperature))
.keyBy(_._1)
.timeWindow(Time.seconds(15))
.reduce((r1, r2) => (r1._1, r1._2.min(r2._2)))

时间间隔可以通过Time.milliseconds(x),Time.seconds(x),Time.minutes(x)等其中的一个来指定。

2.滑动窗口(SlidingEventTimeWindows)
滑动窗口和滚动窗口的函数名是完全一致的,只是在传参数时需要传入两个参数,一个是window_size,一个是sliding_size。
下面代码中的sliding_size设置为了5s,也就是说,每5s就计算输出结果一次,每一次计算的window范围是15s内的所有元素。

val minTempPerWindow: DataStream[(String, Double)] = dataStream
  .map(r => (r.id, r.temperature))
  .keyBy(_._1)
  .timeWindow(Time.seconds(15), Time.seconds(5))
  .reduce((r1, r2) => (r1._1, r1._2.min(r2._2)))

// .window(SlidingEventTimeWindows.of(Time.seconds(15),Time.seconds(5))

时间间隔可以通过Time.milliseconds(x),Time.seconds(x),Time.minutes(x)等其中的一个来指定。

6.2.2 CountWindow

CountWindow根据窗口中相同key元素的数量来触发执行,执行时只计算元素数量达到窗口大小的key对应的结果。
注意:CountWindow的window_size指的是相同Key的元素的个数,不是输入的所有元素的总数。
1滚动窗口
默认的CountWindow是一个滚动窗口,只需要指定窗口大小即可,当元素数量达到窗口大小时,就会触发窗口的执行。

val minTempPerWindow: DataStream[(String, Double)] = dataStream
  .map(r => (r.id, r.temperature))
  .keyBy(_._1)
  .countWindow(5)
  .reduce((r1, r2) => (r1._1, r1._2.max(r2._2)))

2滑动窗口
滑动窗口和滚动窗口的函数名是完全一致的,只是在传参数时需要传入两个参数,一个是window_size,一个是sliding_size。
下面代码中的sliding_size设置为了2,也就是说,每收到两个相同key的数据就计算一次,每一次计算的window范围是10个元素。

val keyedStream: KeyedStream[(String, Int), Tuple] = dataStream.map(r => (r.id, r.temperature)).keyBy(0)
//每当某一个key的个数达到2的时候,触发计算,计算最近该key最近10个元素的内容
val windowedStream: WindowedStream[(String, Int), Tuple, GlobalWindow] = keyedStream.countWindow(10,2)
val sumDstream: DataStream[(String, Int)] = windowedStream.sum(1)

6.2.3 window function

window function 定义了要对窗口中收集的数据做的计算操作,主要可以分为两类:
增量聚合函数(incremental aggregation functions)
每条数据到来就进行计算,保持一个简单的状态。典型的增量聚合函数有ReduceFunction, AggregateFunction。
全窗口函数(full window functions)
先把窗口所有数据收集起来,等到计算的时候会遍历所有数据。ProcessWindowFunction就是一个全窗口函数。

6.2.4 其它可选API

.trigger() —— 触发器
定义 window 什么时候关闭,触发计算并输出结果
.evitor() —— 移除器
定义移除某些数据的逻辑
.allowedLateness() —— 允许处理迟到的数据
.sideOutputLateData() —— 将迟到的数据放入侧输出流
.getSideOutput() —— 获取侧输出流

在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值