3 的幂(简单)
题目描述:
给定一个整数,写一个函数来判断它是否是 3 的幂次方。如果是,返回 true ;否则,返回 false 。
整数 n 是 3 的幂次方需满足:存在整数 x 使得 n == 3x
示例 1:
输入:n = 27
输出:true
示例 2:
输入:n = 0
输出:false
示例 3:
输入:n = 9
输出:true
示例 4:
输入:n = 45
输出:false
提示:
-231 <= n <= 231 - 1
代码:
class Solution {
public:
bool isPowerOfThree(int n) {
bool flag=false;
for(int i=0;i<sqrt(n);i++){
if(n==pow(3,i)){
flag=true;
}
}
return flag;
}
};
进阶:你能不使用循环或者递归来完成本题吗?
class Solution {
public:
bool isPowerOfThree(int n) {
if(n==1) return true;
if(n==0||n%3!=0) return false;
return isPowerOfThree(n/3);
}
};
排列硬币(简单)
你总共有 n 枚硬币,并计划将它们按阶梯状排列。对于一个由 k 行组成的阶梯,其第 i 行必须正好有 i 枚硬币。阶梯的最后一行 可能 是不完整的。
给你一个数字 n ,计算并返回可形成 完整阶梯行 的总行数。
示例 1:
输入:n = 5
输出:2
解释:因为第三行不完整,所以返回 2 。
示例 2:
输入:n = 8
输出:3
解释:因为第四行不完整,所以返回 3 。
提示:
1 <= n <= 231 - 1
代码:
class Solution {
public:
int arrangeCoins(int n) {
return (int)((sqrt(1 + 8.0 * n) - 1) / 2);
}
};
最大连续 1 的个数(简单)
给定一个二进制数组 nums , 计算其中最大连续 1 的个数。
示例 1:
输入:nums = [1,1,0,1,1,1]
输出:3
解释:开头的两位和最后的三位都是连续 1 ,所以最大连续 1 的个数是 3.
示例 2:
输入:nums = [1,0,1,1,0,1]
输出:2
提示:
1 <= nums.length <= 105
nums[i] 不是 0 就是 1.
代码:
class Solution {
public:
int findMaxConsecutiveOnes(vector<int>& nums) {
int t=0,maxn=0;
for(int i=0;i<nums.size();i++){
if(nums[i]==1) {
t++;
if(t>maxn) maxn=t;
}
if(nums[i]==0) t=0;
}
return maxn;
}
};
Pow(x, n)(中等)
这道题目我没想到写了一行就过了。
实现 pow(x, n) ,即计算 x 的 n 次幂函数(即,xn )。
示例 1:
输入:x = 2.00000, n = 10
输出:1024.00000
示例 2:
输入:x = 2.10000, n = 3
输出:9.26100
示例 3:
输入:x = 2.00000, n = -2
输出:0.25000
解释:2-2 = 1/22 = 1/4 = 0.25
提示:
-100.0 < x < 100.0
-231 <= n <= 231-1
-104 <= xn <= 104
代码:
class Solution {
public:
double myPow(double x, int n) {
return pow(x,n);
}
};
跳跃游戏(中等)
给定一个非负整数数组 nums ,你最初位于数组的 第一个下标 。
数组中的每个元素代表你在该位置可以跳跃的最大长度。
判断你是否能够到达最后一个下标。
示例 1:
输入:nums = [2,3,1,1,4]
输出:true
解释:可以先跳 1 步,从下标 0 到达下标 1, 然后再从下标 1 跳 3 步到达最后一个下标。
示例 2:
输入:nums = [3,2,1,0,4]
输出:false
解释:无论怎样,总会到达下标为 3 的位置。但该下标的最大跳跃长度是 0 , 所以永远不可能到达最后一个下标。
提示:
1 <= nums.length <= 3 * 104
0 <= nums[i] <= 105
代码:
class Solution {
public:
bool canJump(vector<int>& nums) {
int k=0;
for(int i=0;i<nums.size();i++) {
if(k<i) return false;
k=max(k,i+nums[i]);
}
return true;
}
};