《动手学PyTorch深度学习建模与应用》第二章:2.4-2.6节详解

写在前面:不知不觉已经更了第一个章节,目前的内容都是很基础的内容,有人会问现在ai时代,还有必要学习这些内容吗,我想说的是,越是基础的内容我们越要认真去学习和分析,ai可以快速解决问题,但是我希望我们可以知其所以然,感谢所有支持的收藏和粉丝,希望这些文章对你们有些许帮助!点点关注不迷路,免费的赞和收藏走起来!后续更新第一时间提示哦,每周会更新不同内容,下周更新如何用各种模态的大模型去为你服务,编写代码。


 

在前面的章节中

2.1-2.3章节回顾

2.3续

我们介绍了基本框架,激活函数和损失函数,向前传播和反向转播。那么我们如何优化已经优化我们建好的模型呢?在深度学习中,优化算法是训练神经网络的核心环节。优化算法通过调整模型的参数,使得损失函数最小化,从而提高模型的性能。本章的2.4到2.6节将详细介绍优化算法的基本概念、常用优化算法及其在PyTorch中的实现,以及卷积神经网络(CNN)的基础知识。

2.4 优化算法:让模型训练更高效

优化算法是训练神经网络的关键,它通过迭代更新模型参数,逐步降低损失函数的值。选择合适的优化算法可以显著提高模型的训练效率和性能。以下是一些常见的优化算法及其在PyTorch中的实现。

2.4.1 常见优化算法

  1. 随机梯度下降(SGD)
    SGD是最基本的优化算法,通过计算损失函数关于参数的梯度,并用梯度下降法更新参数。SGD简单且对凸问题有效,但容易陷入局部最优。optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.9)

    optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.9)

     

  2. 动量优化(Momentum)
    动量优化在SGD的基础上引入了“动量”概念,通过累积历史梯度信息,加速收敛并减少震荡

    optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.9)

     

  3. Adagrad(自适应梯度算法)
    Adagrad根据梯度的历史信息自适应调整学习率,适合稀疏数据问题。

    optimizer = torch.optim.Adagrad(model.paramet
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值