AutoX安途杯中山大学程序设计校赛E-Sequence I

这篇博客探讨了如何使用全排列和深度优先搜索(DFS)方法找到数组归并的最优解。通过全排列,可以确保找到至少一种最优的归并方式。而DFS则通过排列组合所有可能的括号表达式来寻找最小结果。两种方法都有效地解决了这个问题,并且DFS在寻找最小值时自然排除了全负和全正的情况。
摘要由CSDN通过智能技术生成

呜呜,看了题解小小的复盘一下(copy)

//全排列做法

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#define INF 0x3f3f3f3f



int main(){
    int t;
    scanf("%d",&t);
    while(t--){
        int n;
        int a[9] = {};
        scanf("%d",&n);
        for(int i = 1;i<=n;i++)
            scanf("%d",&a[i]);
        sort(a+1,a+n+1);
        int k = INF;
        do
        {
            int ans = 0;
            for(int i = 1;i<=n;i++){
                ans -= a[i];
                if(ans<0)
                    ans*=-1;
            }
            k = min(k,ans);
        }
        while(next_permutation(a+1,a+n+1));   //全排序函数
        printf("%d\n",k);
    }
}

试一下会发现,一个既定的数组无论怎么排序,都有办法归并到最优解,换句话说,我们固定一种归并方式(从左往右归并),进行全排序,其中必定有一种方法是最优解

然后是DFS做法

我们其实从大局上来看,如果我们把整个过程列出来,不去计算,就会发现,整个过程其实是变成了((a[1]-a[2])-a[3]).....,然后再去判断每个括号表达式内是否是负数,如果是负数的话,那么就在这个表达式前面加一个负号,然后把括号展开,那么每一种归并方式到最后就变成了a[1]、a[2]、a[3]........等,然后用+ -组合起来,那么我们只要用排列组合的方式去组合每一种可能,再把最后的答案选一个最小的(最优解),其中虽然dfs的方法会导致有去全负和全正的情况,但是由于是挑选最小的,所以自动被排除了

//dfs做法

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#define INF 0x3f3f3f3f
int a[9] ;
int ans,n;

void dfs(int sum,int d){
    if(d==n+1){
        ans = min(abs(sum),ans);
        return;
    }
    dfs(sum+a[d],d+1);
    dfs(sum-a[d],d+1);
}

int main(){
    int t;
    scanf("%d",&t);
    while(t--){
        memset(a,0,sizeof(a));
        ans = INF;
        scanf("%d",&n);
        for(int i = 1;i<=n;i++)
            scanf("%d",&a[i]);
        dfs(0,1);
        printf("%d\n",ans);
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值