呜呜,看了题解小小的复盘一下(copy)
//全排列做法
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#define INF 0x3f3f3f3f
int main(){
int t;
scanf("%d",&t);
while(t--){
int n;
int a[9] = {};
scanf("%d",&n);
for(int i = 1;i<=n;i++)
scanf("%d",&a[i]);
sort(a+1,a+n+1);
int k = INF;
do
{
int ans = 0;
for(int i = 1;i<=n;i++){
ans -= a[i];
if(ans<0)
ans*=-1;
}
k = min(k,ans);
}
while(next_permutation(a+1,a+n+1)); //全排序函数
printf("%d\n",k);
}
}
试一下会发现,一个既定的数组无论怎么排序,都有办法归并到最优解,换句话说,我们固定一种归并方式(从左往右归并),进行全排序,其中必定有一种方法是最优解
然后是DFS做法
我们其实从大局上来看,如果我们把整个过程列出来,不去计算,就会发现,整个过程其实是变成了((a[1]-a[2])-a[3]).....,然后再去判断每个括号表达式内是否是负数,如果是负数的话,那么就在这个表达式前面加一个负号,然后把括号展开,那么每一种归并方式到最后就变成了a[1]、a[2]、a[3]........等,然后用+ -组合起来,那么我们只要用排列组合的方式去组合每一种可能,再把最后的答案选一个最小的(最优解),其中虽然dfs的方法会导致有去全负和全正的情况,但是由于是挑选最小的,所以自动被排除了
//dfs做法
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#define INF 0x3f3f3f3f
int a[9] ;
int ans,n;
void dfs(int sum,int d){
if(d==n+1){
ans = min(abs(sum),ans);
return;
}
dfs(sum+a[d],d+1);
dfs(sum-a[d],d+1);
}
int main(){
int t;
scanf("%d",&t);
while(t--){
memset(a,0,sizeof(a));
ans = INF;
scanf("%d",&n);
for(int i = 1;i<=n;i++)
scanf("%d",&a[i]);
dfs(0,1);
printf("%d\n",ans);
}
}