一、两者简单介绍及其区别
Linear evaluation(线性评估)和fine-tuning(微调)是两种不同的迁移学习策略,它们之间有一些区别:
Linear evaluation(线性评估):
线性评估是迁移学习中的一种简单方法,通常用于评估预训练模型学到的特征的泛化能力。
在线性评估中,首先在预训练模型(例如在大规模数据集如ImageNet上预训练的模型)上提取特征,然后将这些特征输入到一个简单的线性分类器中进行训练,最终在目标任务上进行测试。
线性评估过程中,只有线性分类器的权重会被学习,而预训练模型的权重保持不变。
线性评估的目标是评估预训练模型的特征学习能力,以及在不同任务上的泛化能力。
Fine-tuning(微调):
微调是迁移学习中的一种更复杂的方法,通常用于在预训练模型的基础上进一步调整模型以适应特定任务。
在微调中,首先在一个大规模数据集上预训练一个模型,然后将这个模型的权重作为初始参数,针对特定任务的数据集进行进一步的训练。
在微调过程中,整个模型的权重都可以被调整,而不仅仅是顶层分类器。
微调的目标是将预训练模型适应到新任务的数据分布中,以提高在新任务上的性能。
因此,线性评估侧重于评估预训练模型的泛化能力,而微调侧重于在预训练模型的基础上对模型进行进一步调整,以适应特定任务。