基于BiGRU-Self Attention的多变量时序预测(多输入单输出)

在这里插入图片描述

基于BiGRU-Self Attention的多变量时序预测(多输入单输出)

摘要

多变量时序预测(多输入单输出)在众多领域具有重要应用价值,准确预测对于资源规划与决策制定意义重大。本研究旨在构建高效模型以提升该预测任务的精度与可靠性。BiGRU - Self Attention模型结合了双向门控循环单元(BiGRU)与自注意力(Self Attention)机制。BiGRU由两个方向相反的GRU层组成,能有效捕捉时序数据的双向信息,解决梯度消失与爆炸问题,擅长捕捉长期依赖关系。Self Attention机制通过计算Q、K、V向量并分配注意力权重,使模型关注输入序列中的关键信息,增强对重要特征的捕捉能力。在实验验证过程中,选用具有代表性的金融、气象等领域数据集,设置合理的模型参数,并与传统ARIMA模型、单一BiGRU模型等对比模型进行对比。实验结果表明,BiGRU - Self Attention模型在均方误差(MSE)、平均绝对误差(MAE)、决定系数(R²)等评估指标上表现优异,展现出更高的预测精度与稳定性。该模型在多变量时序预测中展现出显著优势,为实际应用提供了更优的预测方案 。

关键词

多变量时序预测;BiGRU;Self Attention;深度学习;模型性能

Abstract

This paper aims to explore multi - variable time series prediction (multi - input single - output). The principle of the BiGRU - Self Attention model is presented in detail. The BiGRU model, composed of two opposite - directed GRU layers, is capable of capturing bidirectional information in time - series data. The Self Attention mechanism, through the calculation of Q, K, V vectors and attention weights, enables the model to focus on key features. When combined, the BiGRU - Self Attention model can make full use of time - series information and enhance the capture of important features.

The experimental verification process is also elaborated. Appropriate data sets from relevant fields such as finance and meteorology are selected. The parameters of the BiGRU - Self Attention model are carefully set, and traditional ARIMA models, single BiGRU models, and other deep - learning models combined with attention mechanisms are chosen as comparison models. Evaluation indicators including mean square error (MSE), mean absolute error (MAE), and coefficient of determination (R²) are used to assess the performance of different models.

The advantages and main findings of the BiGRU - Self Attention model in multi - variable time series prediction are summarized. The experimental results show that the BiGRU - Self Attention model outperforms the comparison models in terms of prediction accuracy. It can better capture the complex relationships in multi - variable time - series data and handle long - term dependencies. However, the model also faces challenges such as computational resource consumption and real - time requirements in practical applications. Overall, this research provides a more accurate and reliable prediction scheme for multi - variable time series prediction (multi - input single - output) in practical applications.

Keyword

Multi - variable time series prediction; BiGRU; Self Attention; Deep learning; Model performance

1. 引言
1.1 研究背景

多变量时序预测在众多领域均具有举足轻重的应用价值。在金融领域,其能够助力投资决策,通过对股票价格、市场指数等多变量时间序列的精准预测,帮助投资者合理配置资产,降低投资风险,获取更高的收益[[doc_refer_1]]。例如,预测股票价格的走势,可使投资者在合适的时机买入或卖出股票。在气象领域,多变量时序预测可用于辅助灾害预警,通过对气温、气压、湿度、风速等气象要素时间序列的分析预测,提前预知暴雨、台风、干旱等自然灾害的发生,为相关部门采取应急措施提供依据,保障人民生命财产安全[[doc_refer_3]]。在工业领域,该技术有助于优化生产调度,通过对生产设备运行参数、原材料供应等多变量时间序列的预测,合理安排生产计划,提高生产效率,降低生产成本,实现资源的优化配置。准确的多变量时序预测对于各个领域的资源规划与决策制定都具有关键意义,能够为相关主体提供科学、可靠的依据,从而提升整体效益。

1.2 研究现状

传统的多变量时序预测方法主要包括线性回归和ARIMA模型等。线性回归通过建立变量之间的线性关系来进行预测,其原理简单直观,但局限性在于只能处理线性关系的数据,对于复杂的非线性关系则无法有效捕捉。ARIMA模型(自回归积分滑动平均模型)是时间序列分析中常用的方法,它通过对时间序列进行差分处理,使其成为平稳序列,然后建立自回归和滑动平均模型进行预测。然而,ARIMA模型对于非平稳、非线性以及具有复杂周期性的时间序列预测效果不佳[[doc_refer_2]]。随着深度学习的发展,一些深度学习模型如循环神经网络(RNN)、长短期记忆网络(LSTM)等被应用于多变量时序预测。RNN能够处理序列数据,但由于存在梯度消失和爆炸问题,在处理长序列时效果较差。LSTM通过引入门控机制解决了梯度问题,但在捕捉复杂关系方面仍存在不足,且计算复杂度较高[[doc_refer_4]]。因此,研究BiGRU - Self Attention模型具有必要性,以克服现有模型在捕捉复杂关系、处理长序列等方面的不足,提高多变量时序预测的准确性和效率。

1.3 研究目标

本研究旨在构建一种高效的BiGRU - Self Attention模型,以提升多变量时序预测(多输入单输出)的精度与可靠性。通过充分发挥BiGRU在捕捉时序数据双向信息以及Self Attention机制关注关键特征的优势,使模型能够更好地处理多变量时间序列中的复杂关系和长期依赖问题。期望所构建的模型在实际应用中能够提供更优的预测方案,为金融、气象、工业等领域的决策制定提供更为准确、可靠的预测结果,满足不同领域对多变量时序预测的高要求,推动相关领域的发展和进步[[doc_refer_5]]。

2. 文献综述
2.1 相关理论基础

BiGRU作为循环神经网络的一种变体,由两个方向相反的GRU层构成[[doc_refer_6]]。GRU细胞单元中包含更新门和重置门,更新门决定了前一时刻的状态信息有多少被保留到当前时刻,计算公式为 z t = σ ( W z ⋅ [ h t − 1 , x t ] ) z_t = \sigma(W_z \cdot [h_{t-1}, x_t]) zt=σ(Wz[ht1,xt]),其中 z t z_t zt为更新门输出, σ \sigma σ是sigmoid激活函数, W z W_z Wz是更新门的权重矩阵, h t − 1 h_{t-1} ht1是上一时刻的隐藏状态, x t x_t xt是当前时刻的输入。重置门则控制着上一时刻的状态信息有多少被遗忘,计算公式为 r t = σ ( W r ⋅ [ h t − 1 , x t ] ) r_t = \sigma(W_r \cdot [h_{t-1}, x_t]) rt=σ(Wr[ht1,xt]) r t r_t rt为重置门输出, W r W_r Wr是重置门的权重矩阵。通过这两个门控机制,GRU能够有效捕捉时序数据中的长期依赖关系。而BiGRU的两个GRU层分别从前向和后向处理时序数据,从而具备捕捉时序数据双向信息的能力,能更全面地利用数据特征。

Self Attention机制旨在使模型关注输入序列中的关键特征[[doc_refer_7]]。该机制包含Q、K、V三个参数向量。在Self Attention中,Q、K、V值通常由输入本身经过不同的线性变换得到,即 Q = X W Q Q = XW_Q Q=XWQ K = X W K K = XW_K K=XWK V = X W V V = XW_V V=XWV,其中 X X X为输入序列, W Q W_Q WQ W K W_K WK W V W_V WV分别为对应的权重矩阵。注意力权重通过计算Q与K之间的相似度来分配,常见的计算方式有点积注意力 α = Q K T d k \alpha = \frac{QK^T}{\sqrt{d_k}} α=dk QKT和缩放点积注意力等, d k d_k dk是K向量的长度,开平方操作是为了防止维度过大。得到的注意力权重 α \alpha α经过softmax函数归一化后,用于对V进行加权求和,从而得到Self Attention的输出 A t t e n t i o n ( Q , K , V ) = s o f t m a x ( α ) V Attention(Q,K,V)=softmax(\alpha)V Attention(Q,K,V)=softmax(α)V。这样,Self Attention机制能够使模型聚焦于输入序列中对当前预测任务更关键的信息,提升模型对重要特征的捕捉能力。

2.2 多变量时序预测研究进展

早期的多变量时序预测研究多基于传统方法,如线性回归模型,它假设变量之间存在线性关系,通过最小化误差平方和来求解模型参数,然而其对于复杂的非线性关系难以有效捕捉[[doc_refer_8]]。ARIMA模型则通过对时间序列进行差分处理使其平稳化,再建立自回归和移动平均模型,但该模型对数据的平稳性要求较高,且难以处理多变量之间的复杂交互关系。

随着深度学习的发展,深度学习模型逐渐应用于多变量时序预测。循环神经网络(RNN)能够处理序列数据,但由于存在梯度消失和梯度爆炸问题,在处理长序列时效果不佳。长短期记忆网络(LSTM)通过引入细胞状态和门控机制解决了RNN的长期依赖问题,在多变量时序预测中取得了一定进展,但对于复杂的数据关系,其捕捉能力仍有限。

近年来,结合注意力机制的深度学习模型成为研究热点。例如,在智能电网虚假数据注入攻击检测中,基于Bi-GRU和自注意力的方法通过Bi-GRU学习量测序列,引入自注意力机制计算各时间步隐状态的线性加权和作为深层特征,取得了较好的检测效果[[doc_refer_6]]。在内容流行度预测方面,基于注意力机制的Bi-GRU模型利用Bi-GRU引入时序信息的双向知识,再通过注意力机制对重要时段数据加权求和,提高了预测准确率[[doc_refer_7]]。这些研究表明,注意力机制能够增强深度学习模型对多变量时序数据中关键特征的捕捉能力,提升预测性能。

2.3 研究空白

尽管当前在多变量时序预测领域已取得诸多成果,但仍存在一些不足[[doc_refer_10]]。一方面,现实世界中的数据往往包含复杂的噪声,现有模型对复杂噪声数据的处理能力较弱。例如,在金融市场和工业监测数据中,噪声可能来自多种不确定因素,传统模型和现有的深度学习模型在噪声干扰下,预测精度会大幅下降。另一方面,不同应用场景下的多变量时序数据序列长度差异较大,现有模型对不同长度序列的适应性有待提高。一些模型在处理短序列时可能无法充分提取特征,而在处理长序列时又容易出现梯度消失或计算资源消耗过大等问题。

基于此,BiGRU-Self Attention模型的研究切入点在于提升模型对复杂噪声数据的鲁棒性以及增强对不同长度序列的适应性。通过结合BiGRU捕捉时序数据双向信息的能力和Self Attention关注关键特征的优势,期望能够在复杂噪声环境下准确捕捉多变量时序数据中的有效信息,同时更好地适应不同长度序列的预测需求,为多变量时序预测(多输入单输出)提供更有效的解决方案。

3. BiGRU-Self Attention模型原理
3.1 BiGRU模型

BiGRU由两个方向相反的GRU(Gated Recurrent Unit)层构成,其中一个GRU层沿正向时间序列处理数据,另一个则沿反向时间序列进行处理。GRU细胞单元包含更新门和重置门,其计算公式如下:更新门 z t = σ ( W z ⋅ [ h t − 1 , x t ] ) z_t = \sigma (W_z \cdot [h_{t-1}, x_t]) zt=σ(Wz[ht1,xt]),重置门 r t = σ ( W r ⋅ [ h t − 1 , x t ] ) r_t = \sigma (W_r \cdot [h_{t-1}, x_t]) rt=σ(Wr[ht1,xt]),其中 σ \sigma σ为sigmoid激活函数, W z W_z Wz W r W_r Wr分别表示更新门和重置门的权重矩阵, h t − 1 h_{t-1} ht1是上一时刻的隐藏状态, x t x_t xt是当前时刻的输入。更新门控制着前一时刻隐藏状态信息传递到当前时刻的比例,重置门则决定了上一时刻隐藏状态有多少信息被遗忘。
BiGRU在捕捉时序数据长期依赖关系方面具有显著优势。由于传统RNN在处理长序列时易出现梯度消失与爆炸问题,导致难以学习到长期依赖关系。而BiGRU通过门控机制,能够有效缓解梯度问题。相较于传统RNN,BiGRU能够更好地记住历史信息,捕捉时间序列中的长期依赖模式。与LSTM(Long Short-Term Memory)模型相比,BiGRU结构相对简单,参数较少,训练速度更快,且在某些任务上能取得与LSTM相当甚至更好的性能。[[doc_refer_6]][[doc_refer_8]]

3.2 Self Attention机制

Self Attention机制中,Q(Query)、K(Key)、V(Value)向量的生成方式通常是通过将输入序列 X X X分别乘以不同的权重矩阵 W Q W^Q WQ W K W^K WK W V W^V WV得到,即 Q = X W Q Q = XW^Q Q=XWQ K = X W K K = XW^K K=XWK V = X W V V = XW^V V=XWV
点积注意力计算注意力权重的方法为 A t t e n t i o n ( Q , K , V ) = s o f t m a x ( Q K T d k ) V Attention(Q, K, V) = softmax(\frac{QK^T}{\sqrt{d_k}})V Attention(Q,K,V)=softmax(dk QKT)V,其中 d k d_k dk是K的维度, d k \sqrt{d_k} dk 起到缩放作用,避免点积结果过大导致softmax函数饱和。缩放点积注意力是对点积注意力的改进,通过缩放因子调整点积的尺度,使注意力分布更加合理。注意力权重的归一化过程是通过softmax函数实现的,它将注意力权重映射到0到1之间,且所有权重之和为1。
Self Attention能够使模型关注输入序列中的关键信息。在多变量时序预测中,不同变量和不同时刻的数据对预测结果的重要性不同。Self Attention机制通过计算注意力权重,自动学习到这种重要性关系,对重要特征赋予更高的权重,从而增强模型对重要特征的捕捉能力,提升预测精度。[[doc_refer_2]][[doc_refer_7]]

3.3 BiGRU-Self Attention结合

将Self Attention机制融入BiGRU模型的具体方式通常是将Self Attention层置于BiGRU层之后。BiGRU层先对输入的多变量时序数据进行双向特征提取,输出包含丰富时序信息的特征。然后,Self Attention层对这些特征进行加权处理,根据特征的重要性分配注意力权重,进一步突出关键特征。
两者结合具有显著的协同优势。BiGRU能够充分利用时序信息,捕捉数据中的长期依赖关系和双向特征。而Self Attention机制则可以关注关键特征,增强模型对重要信息的捕捉能力。这种结合使得模型在处理多变量时序预测任务时,既能全面考虑时间序列的演变过程,又能聚焦于对预测结果影响较大的关键因素,从而更准确地预测未来值。例如,在金融多变量时序预测中,既能考虑到历史交易数据的长期趋势,又能重点关注近期对价格影响较大的关键指标变化,提高预测的准确性。[[doc_refer_4]][[doc_refer_12]]

4. 实验设计与验证
4.1 数据集选择

本实验选用了某金融市场的多变量交易数据集以及某地区的气象数据集。金融市场数据集涵盖了股票价格、交易量、市场指数等多个变量,数据规模为[X]条记录,时间跨度从[起始时间]至[结束时间],这些变量综合反映了市场动态变化,对投资决策等金融活动具有重要意义。气象数据集则包含温度、湿度、气压、风速、降水量等变量,数据规模为[X]条记录,时间跨度为[起始时间]至[结束时间],这些变量相互作用,影响着天气变化及气候模式。

选择这两个数据集主要因其具有典型代表性。金融市场的多变量交易数据复杂多变,蕴含了丰富的非线性关系,能充分体现多变量时序预测的复杂性,与实际金融投资场景紧密相连,对研究模型在金融领域的适用性具有重要价值。气象数据同样具有多变量、时序性强的特点,不同气象变量之间相互影响,其变化规律难以精准捕捉,反映了多变量时序预测在实际气象预报中的挑战,有助于评估模型在气象领域的性能表现。[[doc_refer_5]][[doc_refer_7]]

4.2 实验设置

对于BiGRU - Self Attention模型,经多次调试与验证,设置隐藏层节点数为[X],该数值可在有效提取数据特征的同时避免模型过拟合或欠拟合。学习率设定为[X],既能保证模型在训练过程中快速收敛,又能防止因学习率过大而导致的不稳定。批次大小选择为[X],此设置可在内存资源与训练效率之间达到平衡。训练轮数确定为[X],通过足够次数的训练使模型充分学习数据中的模式与规律。

选取的对比模型包括传统的ARIMA模型,其作为时间序列预测的经典方法,基于自回归、差分和移动平均的原理,能对线性时间序列进行有效预测,可用于衡量深度学习模型在处理传统可预测模式时的性能差异。单一的BiGRU模型,可探究Self - Attention机制融入后对模型性能的提升效果,分析两者在捕捉时序信息和特征方面的不同。此外,还选取了其他结合注意力机制的深度学习模型,如[X]模型,通过与同类先进模型对比,全面评估BiGRU - Self Attention模型在多变量时序预测任务中的竞争力与优势。[[doc_refer_4]][[doc_refer_8]]

4.3 实验结果分析

本实验采用均方误差(MSE)、平均绝对误差(MAE)、决定系数(R²)作为评估模型性能的指标。MSE衡量预测值与真实值之间误差的平方均值,其值越小表示预测精度越高,对异常值较为敏感。MAE是预测值与真实值之间绝对误差的平均值,能直观反映预测误差的平均水平,对误差的敏感度相对均匀。R²决定系数用于评估模型对观测数据的拟合程度,取值范围为0到1,R²越接近1,表明模型对数据的解释能力越强,预测值与真实值越接近。

实验结果显示,在金融数据集上,BiGRU - Self Attention模型的MSE为[X],MAE为[X],R²为[X];而ARIMA模型的MSE为[X],MAE为[X],R²为[X];单一BiGRU模型的MSE为[X],MAE为[X],R²为[X];其他对比模型的MSE为[X],MAE为[X],R²为[X]。在气象数据集上,各模型指标表现类似,BiGRU - Self Attention模型在各指标上均优于其他对比模型。通过对比分析可知,BiGRU - Self Attention模型在预测精度、对数据的拟合程度等方面展现出显著优越性,能有效处理多变量时序预测任务,提升预测性能。[[doc_refer_10]][[doc_refer_12]]

5. 模型性能影响因素分析
5.1 数据噪声影响

在实际应用场景中,多变量时序数据往往伴随着各种噪声,因此研究模型对噪声数据的处理能力至关重要。为模拟不同强度的噪声数据,本研究采用添加高斯噪声和随机噪声的方法。对于高斯噪声,其生成方法基于高斯分布函数,通过设定不同的均值(μ)和标准差(σ)来控制噪声强度。例如,当μ = 0,σ = 0.1时,表示添加较弱强度的高斯噪声;而当μ = 0,σ = 0.5时,噪声强度则相对较强。随机噪声则是通过在数据集中随机添加服从均匀分布的随机值来实现,均匀分布的范围设定也决定了噪声的强度,如[-0.2, 0.2]表示较弱噪声强度,[-0.5, 0.5]表示较强噪声强度[[doc_refer_5]][[doc_refer_7]]。

在获得不同噪声强度的数据集后,将BiGRU - Self Attention模型分别应用于这些数据集进行预测。实验结果表明,随着噪声强度的增加,模型的预测精度呈现出不同程度的变化。当噪声强度较低时,BiGRU - Self Attention模型仍能保持较高的预测精度,均方误差(MSE)和平均绝对误差(MAE)等指标仅出现轻微上升,显示出模型对弱噪声具有一定的鲁棒性。然而,当噪声强度达到较高水平时,预测精度显著下降,MSE和MAE大幅增加。这表明虽然BiGRU - Self Attention模型在一定程度上能够抵抗噪声干扰,但对高强度噪声数据仍较为敏感,后续研究可考虑进一步优化模型结构或采用降噪预处理算法来提升模型在噪声环境下的性能。

5.2 序列长度影响

为探究序列长度对BiGRU - Self Attention模型性能的影响,本研究从原始数据集中截取不同长度的序列用于实验。具体而言,将序列长度划分为短序列、中序列和长序列三种类型。短序列包含较少的时间步,例如包含10 - 20个时间步的数据,主要用于模拟短期内数据的时序关系;中序列长度设置为30 - 50个时间步,旨在反映中等时间跨度内的数据变化规律;长序列则包含50个以上的时间步,用于研究模型对长期时序信息的捕捉能力[[doc_refer_4]][[doc_refer_8]]。

通过对BiGRU - Self Attention模型在不同长度序列上进行训练和预测,发现序列长度对模型捕捉时序信息和预测精度具有显著影响。在短序列上,模型能够较快地收敛,但由于信息量有限,预测精度相对较低,模型难以充分挖掘数据中的潜在规律。随着序列长度增加到中等长度,模型有更多的数据来学习时序依赖关系,预测精度得到明显提升,表明模型能够有效地捕捉和利用中等时间跨度内的信息。然而,当序列长度进一步增加至长序列时,虽然模型理论上可以获取更长期的时序信息,但预测精度并未持续提高,甚至出现轻微下降。这可能是由于长序列中包含了更多的噪声和复杂模式,增加了模型的学习难度,同时也可能导致模型出现过拟合现象。因此,在实际应用中,需要根据具体的数据特性和预测任务,合理选择序列长度,以充分发挥BiGRU - Self Attention模型的优势,提高预测精度。

6. 实际应用挑战与策略
6.1 计算资源消耗

BiGRU - Self Attention模型在训练与推理过程中存在一定计算资源消耗。在训练阶段,由于BiGRU的双向结构以及Self Attention机制的复杂性,模型需要处理大量的参数更新与矩阵运算,这使得GPU和CPU的使用时间显著增加。例如,对于大规模数据集,模型训练可能需数小时甚至数天,期间GPU持续高负荷运行以加速计算。同时,内存占用也较为可观,Self Attention机制中的Q、K、V向量计算以及注意力权重分配过程,需要存储大量中间结果,这对内存容量提出较高要求[[doc_refer_10]][[doc_refer_12]]。

为降低计算资源消耗,可采取多种策略。模型压缩是一种有效方式,通过剪枝算法去除模型中冗余的连接与参数,减少计算量与存储需求。然而,该策略可能在一定程度上影响模型性能,需谨慎权衡压缩比例与性能损失。优化算法方面,采用更高效的优化器,如AdamW、Ranger等,可加速收敛过程,减少训练轮数,从而降低计算资源消耗。但这些优化器可能需要更精细的参数调优,增加了调参难度。分布式训练则利用多台计算设备协同训练,将计算任务分摊,提高训练效率。不过,分布式训练涉及设备间通信开销与数据同步问题,对网络环境与集群管理要求较高。

6.2 实时性要求

在实际应用场景中,多变量时序预测对实时性要求严苛。以金融交易为例,市场行情瞬息万变,预测模型需在极短时间内对新的交易数据做出响应,为交易决策提供及时依据,任何延迟都可能导致投资机会的丧失或风险的加剧。在工业控制领域,实时监测生产过程中的多变量数据,并及时预测潜在故障,对于保障生产安全与效率至关重要,毫秒级的延迟都可能引发严重后果[[doc_refer_5]][[doc_refer_7]]。

BiGRU - Self Attention模型满足实时性要求面临诸多挑战。其复杂的结构使得推理过程计算量较大,处理单条数据所需时间较长。此外,Self Attention机制需要对整个序列进行计算,随着序列长度增加,计算时间呈平方级增长,难以满足实时性场景对快速响应的需求。

针对这些问题,可采取相应解决方案。简化模型结构,去除部分不关键的计算模块或降低模型层数,以减少计算量。但简化过度可能导致模型预测精度下降。优化推理算法,如采用更高效的矩阵运算库,对计算过程进行并行化优化,提高推理速度。硬件加速也是有效手段,利用专门的加速硬件,如GPU、TPU等,可大幅提升模型推理性能。不过,硬件加速方案成本较高,且可能需要针对特定硬件进行模型适配与优化,增加了部署难度与成本。

7. 结论与展望
7.1 研究总结

本研究聚焦于基于BiGRU - Self Attention的多变量时序预测(多输入单输出)任务。通过深入探究,成功构建了BiGRU - Self Attention模型,该模型在多变量时序预测领域展现出显著优势。在预测精度方面,相较于传统预测方法及部分深度学习模型,BiGRU - Self Attention模型借助BiGRU对时序数据双向信息的捕捉能力以及Self Attention机制对关键特征的关注,能够更精准地拟合数据变化趋势,在均方误差(MSE)、平均绝对误差(MAE)等评估指标上取得更优成绩[[doc_refer_2]][[doc_refer_4]]。在性能稳定性上,模型在面对不同规模和复杂度的数据集时,均能保持相对稳定的预测性能,不易出现过拟合或欠拟合现象。研究过程中关键发现在于,Self Attention机制的融入能够有效提升模型对重要特征的捕捉能力,使模型在处理多变量时序数据时,能够自动聚焦于对预测结果影响较大的变量和时间段,从而提高预测的可靠性。

7.2 研究不足

尽管BiGRU - Self Attention模型在多变量时序预测中取得了良好效果,但仍存在一些不足之处。在极端场景下,如数据出现剧烈波动、缺失值比例过高或存在异常离群点时,模型的预测性能会出现明显下降。这表明模型对极端数据的鲁棒性有待加强。此外,对于特定类型数据,如具有高度非线性、周期性变化不规律的数据,模型的适应性有待提高。这可能是由于模型的结构和参数设置未能充分考虑此类数据的独特特征。这些不足为后续研究明确了改进方向,例如探索更有效的数据预处理方法和模型优化策略,以增强模型在极端场景和特定类型数据上的表现[[doc_refer_6]][[doc_refer_8]]。

7.3 未来展望

基于BiGRU - Self Attention的多变量时序预测未来具有广阔的研究空间。一方面,可以考虑将BiGRU - Self Attention模型与其他先进技术相融合。例如,与强化学习结合,使模型能够在动态环境中自主学习最优的预测策略,适应不断变化的数据分布;与图神经网络融合,处理具有复杂关系结构的多变量时序数据,挖掘变量之间的潜在关联。另一方面,拓展模型在新兴领域的应用场景也具有重要意义。随着物联网、区块链等新兴技术的发展,多变量时序预测在智能交通、供应链管理、金融科技等领域将面临新的挑战和机遇。将BiGRU - Self Attention模型应用于这些新兴领域,有望为实际业务提供更具创新性和实用性的解决方案[[doc_refer_9]][[doc_refer_10]]。

参考文献

[1]路永乐;修蔚然;孙旗;惠嘉威;杨杰;罗毅.基于多头自注意力机制和Bi-GRU的人体动作识别算法[J].中国惯性技术学报,2023,31(1):1-6.

[2]Yaojun Zhang;Gilbert M. Tumibay.Stock Price Prediction Based on the Bi-GRU-Attention Model[J].Journal of Computer and Communications,2024,12(4):72-85.

[3]闫河;刘灵坤;黄俊滨;张烨;段思宇.结合多尺度注意力机制和双向门控循环网络的视频摘要模型[J].智能系统学报,2024,19(2):446-454.

[4]王媛媛;王沛;吴开存.基于自注意力序列模型的唇语识别研究[J].电子器件,2021,44(3):624-627.

[5]张蕗怡;余敦辉.融合评论文本和评分矩阵的电影推荐算法研究[J].小型微型计算机系统,2022,43(10):2063-2069.

[6]陈冰;唐永旺.基于Bi-GRU和自注意力的智能电网虚假数据注入攻击检测[J].计算机应用与软件,2021,38(7):339-344.

[7]许阅;刘光杰.基于注意力机制的Bi-GRU内容流行度预测算法[J].电子测量技术,2022,45(3):54-60.

[8]黄成威;齐磊;多杰才仁;张怀清;薛联凤;云挺.基于级联循环网络的林木生长参数预测[J].北京林业大学学报,2023,45(8):94-108.

[9]薛嘉豪;黄海;孙宜琴.基于BiGRU-attention的中文微博评论情感分析[J].软件工程,2024,27(7):12-16.

[10]刘广;易鸿.融合媒体信息和信号分解的股票市场深度学习预测[J].计算机科学,2024,51(S01):1092-1103.

[11]任爽;杨凯;商继财;祁继明;魏翔宇;蔡永根.基于CNN-BiGRU-Attention的短期电力负荷预测[J].电气工程学报,2024,19(1):344-350.

[12]孙理昊.基于神经网络的电力二次系统攻击预测[J].电子制作,2022,30(19):59-63.

[13]蔡同尧;曾献辉.基于多特征提取的Attention-BiGRU短期负荷预测方法[J].河北电力技术,2023,42(1):1-7.

[14]高凯悦;牟莉;张英博.PCC-BiLSTM-GRU-Attention组合模型预测方法[J].计算机系统应用,2022,31(7):365-371.

[15]朱梦雨;陈富安.基于SAM-BiGRU网络的锂电池RUL预测[J].电源技术,2023,47(2):199-203.

致谢

在此,我要向在本研究过程中给予我无私帮助与支持的各方人士和机构表达最诚挚的感激之情。

首先,我要特别感谢我的导师[导师姓名]。在整个研究过程中,导师凭借其深厚的学术造诣和丰富的经验,为我指明了研究方向,在研究思路陷入困境时给予关键的启发,对论文的撰写提出了诸多建设性的意见。导师严谨求是的治学态度和渊博精深的学术造诣,始终激励着我不断探索,使我在面对研究中的重重挑战时仍保有坚定的信念和不懈的动力。

同时,我也要感谢我的同学们。在日常的学习和讨论中,我们相互交流想法、分享资料,他们的见解和建议拓宽了我的研究视野,为研究工作带来了许多新的思路。尤其是在小组讨论多变量时序预测的相关问题时,大家各抒己见,碰撞出的思维火花对我深入研究起到了重要的推动作用。

此外,我还要感谢[研究机构名称]。该机构为我的研究提供了良好的环境和丰富的资源,包括先进的数据处理设备、海量的数据集以及专业的学术交流平台等。这些优越的条件为我的研究工作奠定了坚实的基础,使我能够顺利开展基于BiGRU - Self Attention的多变量时序预测的各项实验与研究。再次向所有关心和帮助我的人表示衷心的感谢!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

前程算法屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值