时间序列分析 | Python实现SSA奇异谱时间序列分解(分解为周期序列和趋势序列的和)

16 篇文章 1 订阅 ¥259.90 ¥399.90
本文介绍了使用奇异谱分析(SSA)进行时间序列分解,以分离长期趋势和周期序列的方法。通过算法流程,程序设计及案例分析,阐述了SSA在时间序列预测、异常检测和聚类中的应用。
摘要由CSDN通过智能技术生成

时间序列分析 | Python实现SSA奇异谱时间序列分解(分解为周期序列和趋势序列的和)

基本介绍

时间序列分解是时序分析中的重要方法,广泛应用于时间序列预测,时间序列异常检测,时间序列聚类等场景,在工业界有很多的落地应用。一个时间序列往往是以下几类变化形式的叠加或耦合:
长期趋势(Secular trend, T):长期趋势指现象在较长时期内持续发展变化的一种趋向或状态。
季节变动(Seasonal Variation, S):季节波动是由于季节的变化引起的现象发展水平的规则变动
循环波动(Cyclical Variation, C):循环波动指以若干年为期限,不具严格规则的周期性连续变动
不规则波动(Irregular Variation, I): 不规则波动指由于众多偶然因素对时间序列造成的影响。
其中循环波动和季节变动一般可整合分解为有规律的周期序列,而长期趋势则可整合分解为趋势序列。分解出这两种序列是时序分解中的重要课题。

在这里插入图片描述

算法流程

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

前程算法屋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值