1. 背景与概述
1.1 WRF 简介
WRF(Weather Research and Forecasting Model)是一款由美国国家大气研究中心(NCAR)、美国国家海洋和大气管理局(NOAA)等机构共同开发的大气数值模式。其主要特点包括:
- 多尺度模拟:可从全球/区域尺度到中尺度进行大气模拟与预测。
- 模块化设计:物理过程、动力过程、化学过程等可采用多种方案,用户可根据需求进行选择。
- 广泛应用:不仅用于天气预报、中尺度气象研究,还可用于区域气候模拟、空气质量模拟、风能评估等。
1.2 PALM 简介
PALM(过去全称为 Parallelized Large-Eddy Simulation Model)是德国汉诺威大学(Leibniz University Hannover)等机构开发的大涡模拟(LES)模型。它的核心特点是针对高分辨率下的湍流研究,特别适合用来研究城市尺度或局地复杂地形下的流场、温度场以及污染物扩散等。其主要特性包括:
- 高分辨率大涡模拟(LES):能够显式地解析出亚网格以上的大部分湍流结构,模拟精度更高。
- 强大的并行计算能力:可以利用高性能计算平台实现大规模计算,适合对城市或地形复杂区域进行精细化模拟。
- 多学科扩展:包括建筑热力、气溶胶输送、生物气象学等领域的扩展模块,以便开展城市气候、热岛效应、污染物扩散等研究。
1.3 为什么要结合 WRF 与 PALM?
- 尺度衔接与分辨率需求:WRF 通常用于中等水平(百米到公里级分辨率)的区域或中尺度预报与模拟;PALM 则擅长在几十米甚至更高分辨率下对局地湍流结构进行精细分析。将二者结合可以实现从中尺度到高分辨率微尺度的模拟链条。
- 边界条件获取:PALM 需要外部大气场(如风场、温度场、湿度场等)作为驱动边界条件,WRF 则能够提供一个合理、动态演变的中尺度背景场。相比单独使用理想化或观测插值的边界条件,从 WRF 提取的大气场更适合城市等复杂地形的模拟。
- 物理过程精细化:WRF 在较大的区域尺度上能够包含辐射、云微物理、对流等物理过程,但在接近地表、尤其是城市街道峡谷等细节的湍流传输上难以完全解析;PALM 则能在局地尺度对湍流过程进行详细模拟,弥补 WRF 在超细网格尺度上的不足。
2. 基本原理与核心概念
2.1 中尺度数值模式与大涡模拟的区别
- 中尺度数值模式(WRF):通过解完整或近似的可压缩流体力学方程(通常是NWP框架下的方程组),采用湍流闭合方案(如一阶或混合长度方案)来描述湍流的统计效应。由于网格较粗,很难解析出小尺度湍流结构。
- 大涡模拟(LES):将湍流分为可解析的“大涡”与不可解析的“亚格子尺度”(SGS)涡量。大涡部分通过网格直接计算得到,亚格子部分则通过次网格模型来处理。这种方法能够对湍流结构进行更细致的刻画,在对城市边界层或近地层细节要求较高的研究中尤为重要。
2.2 嵌套与边界条件
当将 WRF 与 PALM 结合时,最关键的技术要点是如何给 PALM 提供合理的初始和边界条件。通常的做法是将一段时间的 WRF 输出作为 PALM 的输入,包括:
- 水平风场:u、v 分量
- 温度场:潜温或其它形式
- 湿度场:绝对湿度或者比湿
- 地表热通量、地表温度(如城市参数化中需要)
PALM 可以在其水平边界(如西/东/南/北)动态更新来自 WRF 的大气场,使得 LES 模拟在边界处与较大尺度背景一致,从而保证在高分辨率区域的模拟更贴近真实的大气条件。
3. 结合方式与技术流程
3.1 典型工作流程
- WRF 前处理:
- 选取合理的区域和分辨率(如 1~3 km)。
- 根据研究区域的地形、下垫面类型、高程、地表覆盖等进行网格划分。
- 选择合适的物理参数化方案(PBL、微物理、辐射等)。
- 进行模式运行,输出一段时间序列的模拟结果(如 24 小时或更长)。
- 数据提取与格式转换:
- 从 WRF 输出中提取所需的气象场(风、温度、湿度、压强等)。
- 根据 PALM 所需的网格、坐标系,将数据进行内插或重新取样(re-sampling)。
- 常用做法是水平坐标对齐,垂直方向通常也需要确保与 PALM 的网格匹配,或在 PALM 内部通过插值实现。
- PALM 前处理:
- 在目标区域(通常更小)定义 PALM 的网格。网格大小可达到几米到几十米的水平分辨率,垂直方向可根据需要加密近地层。
- 设置 PALM 的物理过程、湍流模式(SGS 模型),并开启相应的扩展模块(如建筑热力模块、化学输运模块等)。
- 将 WRF 的输出作为 PALM 的初始和边界驱动。
- PALM 运行:
- 在高性能计算环境中运行 PALM 模型,并根据 WRF 提供的时间序列或固定边界进行 LES 模拟。
- 观测或测站资料也可在 PALM 中用于同化或验证。
- 结果后处理:
- 分析 PALM 输出的高分辨率流场、温度场、污染物浓度等。
- 与实测或其他参考数据进行对比验证。
- 若有需要可进行可视化,如三维街道风场、城市热岛分布等。
3.2 耦合方式细分
- 一体化嵌套方式:在同一套框架中,通过 WRF 的网格与 PALM 网格的多重嵌套直接通信,WRF 提供 PALM 边界。由于这需要深度定制,两者之间需要专门的耦合接口,目前还没有像 WRF-LES 官方模块那样完全无缝对接。大多数情况下仍采用分步离线驱动的形式。
- 离线驱动方式:最常见做法是先运行 WRF,得到边界与初始场后,再将其转化为 PALM 所需的输入文件,PALM 运行时在各边界随时间逐步读取并更新这些信息。这种方式灵活度高,但需要仔细进行插值和时间同步处理。
4. 应用领域与案例
4.1 城市气候与城市通风
在研究城市热岛效应或城市通风廊道设计时,需要既考虑较大区域的天气背景(风向、风速、温度、湿度变化),也需要在局地尺度上解析城市街道峡谷、建筑群间的湍流输送过程。利用 WRF 提供的背景流场,可以让 PALM 在目标城市区域获得更真实的初始与边界条件,从而更准确地模拟城市微气候、城市热岛强度,以及评估通风廊道布局对城市气象和空气质量的影响。
4.2 大气污染与空气质量预报
大气污染物在城市中的扩散过程非常复杂,受建筑群布局、局地湍流、不稳定度等多因素影响。WRF 提供了区域性的气象背景场和污染物输送信息,而 PALM 的大涡模拟可以捕捉街道层次的湍流特征与涡旋结构,从而更精准地模拟污染物在复杂城市地形中的分布与传输,用于城市空气质量精细化管理和决策支持。
4.3 风能评估与风工程
在风能开发或建筑风工程研究中,需要评估局地风力的时空分布。WRF 可以提供风能资源的气候学统计和中尺度背景,而 PALM 可以对风力机周边流场、风力机尾流及复杂地形对风场的影响进行高精度模拟,为风场选址、风机布置优化提供支撑。
4.4 灾害天气下的局地响应
对于飑线、龙卷风或强对流天气等剧烈小尺度天气系统,PALM 可能在更小的区域、更高分辨率下解析湍流结构与地面影响。而 WRF 则能较好地描绘灾害天气的中尺度环境背景,将二者结合有助于对局地性极端气象过程的深入分析和预报。
5. 常见挑战与问题
- 分辨率与计算量
- 大涡模拟对网格分辨率要求极高,三维网格规模巨大,计算量和存储需求非常可观。即使有 WRF 提供背景,也需要强大的高性能计算集群来运行 PALM。
- 插值与坐标系转换
- 不同模式的坐标系和网格结构不尽相同(WRF 的垂直方向通常采用 σ-坐标,PALM 采用直角坐标),插值过程中可能引入误差。需要精心设计插值方案和边界场更新频率。
- 物理过程参数化不一致
- WRF 与 PALM 在边界层参数化、地表过程、云微物理等方面的处理方式可能不同,特别是对于相对湿度、辐射传输和地表通量等,如何保持两者物理方案的一致性或兼容性,需要格外注意。
- 时间同步与边界场更新
- 如果 PALM 的模拟时间步长较小,而 WRF 的输出间隔较大(如1小时或3小时),则在 PALM 中如何平滑地插值并更新边界条件,是一个重要的技术问题。更新频率过低会导致模拟中出现不连续,过高又会增加存储与数据I/O负担。
- 验证与不确定性量化
- 将两个模型结合并不必然带来结果的显著提升,仍需要通过观测(地面站、雷达、激光雷达、气象塔等)进行验证;应对模式不确定性进行敏感性测试或不确定性评估,以确保模拟结果的可靠性。
6. 前景与展望
- 多物理过程集成
- 随着城市环境研究的深入,模式中加入更多过程(如城市植被、室内外相互作用、人为热排放)的需求日渐增强。WRF-PALM 的耦合可以与城市冠层模式、建筑能耗模型、交通排放模型等结合,进一步提升对城市综合环境的模拟与管理水平。
- 更高效的耦合平台
- 社区目前也在研究开发更自动化、一体化的耦合平台,简化从 WRF 到 PALM 的数据传输流程,提供更友好的界面与统一的文件格式。
- 大数据与人工智能辅助
- 在处理超大规模数据、进行快速敏感性测试或参数寻优时,机器学习或数据同化方法可以辅助数值模拟,减少计算量并提高精度。尤其在 PALM 较高耗时的场景中,借助 AI 进行模式加速或结果分析,将是未来的一个趋势。
- 云计算与容器化
- 为了降低对本地超算资源的依赖,将数值模拟部署在云平台上,通过容器或虚拟化手段快速搭建运行环境也成为可能。这将有助于小型研究团队或公司在没有本地 HPC 的情况下完成高分辨率模拟。
7. 总结
WRF 与 PALM 的结合为大气科学、城市气候研究以及风工程等领域带来了强大的多尺度模拟能力。WRF 提供中尺度到区域尺度的可靠气象背景,PALM 则能在较小的网格尺度上对湍流结构和边界层细节进行高精度模拟,实现了从“天气”到“城市街道”的多尺度衔接。
在实际应用中,需要注意模式之间的坐标系统、时间同步、物理过程一致性等技术细节,并具备足够的计算资源来支持高分辨率大涡模拟。另外,对模拟结果的观测验证和不确定性量化同样重要,以确保结论的科学性和可应用性。
展望未来,随着高性能计算平台、数据同化技术、机器学习以及更多城市参数化/生物气象扩展模块的出现,WRF 与 PALM 的耦合应用必将进一步拓展和完善,为城市规划、空气质量管理、风能开发以及灾害天气模拟提供更精细、更准确的科学支撑。