文章目录
题目:454. 四数相加 II
链接: leetcode题目链接
给你四个整数数组 nums1、nums2、nums3 和 nums4 ,数组长度都是 n ,请你计算有多少个元组 (i, j, k, l) 能满足:
0 <= i, j, k, l < n
nums1[i] + nums2[j] + nums3[k] + nums4[l] == 0
示例 1:
输入:nums1 = [1,2], nums2 = [-2,-1], nums3 = [-1,2], nums4 = [0,2]
输出:2
解释:
两个元组如下:
- (0, 0, 0, 1) -> nums1[0] + nums2[0] + nums3[0] + nums4[1] = 1 + (-2) + (-1) + 2 = 0
- (1, 1, 0, 0) -> nums1[1] + nums2[1] + nums3[0] + nums4[0] = 2 + (-1) + (-1) + 0 = 0
示例 2:
输入:nums1 = [0], nums2 = [0], nums3 = [0], nums4 = [0]
输出:1
提示:
1).n == nums1.length
n == nums2.length
n == nums3.length
n == nums4.length
2).1 <= n <= 200
3).-228 <= nums1[i], nums2[i], nums3[i], nums4[i] <= 228
实现算法:map型哈希表
不涉及去重问题,分为两部分使用哈希表
方法思路:
//
class Solution {
public:
int fourSumCount(vector<int>& A, vector<int>& B, vector<int>& C, vector<int>& D) {
unordered_map<int, int> umap; //key:a+b的数值,value:a+b数值出现的次数
// 遍历大A和大B数组,统计两个数组元素之和,和出现的次数,放到map中
for (int a : A) {
for (int b : B) {
umap[a + b]++;
}
}
int count = 0; // 统计a+b+c+d = 0 出现的次数
// 在遍历大C和大D数组,找到如果 0-(c+d) 在map中出现过的话,就把map中key对应的value也就是出现次数统计出来。
for (int c : C) {
for (int d : D) {
if (umap.find(0 - (c + d)) != umap.end()) {
count += umap[0 - (c + d)];
}
}
}
return count;
}
};
p.s.
自我实现
class Solution {
public:
int fourSumCount(vector<int>& nums1, vector<int>& nums2, vector<int>& nums3, vector<int>& nums4) {
int n=nums1.size();
unordered_map<int,int>sumab;
for(int i=0;i<n;i++){
for(int j=0;j<n;j++){
auto iter=sumab.find(nums1[i]+nums2[j]);
if(iter!=sumab.end()){
iter->second++;
}
auto countab=sumab.count(nums1[i]+nums2[j])+1;
sumab.insert(pair<int,int>(nums1[i]+nums2[j],countab));
}
}
int count=0;
for(int k=0;k<n;k++){
for(int l=0;l<n;l++){
auto iter2=sumab.find(0-(nums3[k]+nums4[l]));
if(iter2!=sumab.end()){
count+=iter2->second;
}
}
}
return count;
}
};
p.s.
填入直接umap[i]++
遍历a:A;
做题心得
因为不涉及去重问题,所以直接用哈希表,不过我的代码赘余太多了,要改进一下。
题目:383. 赎金信
链接: leetcode题目链接
给你两个字符串:ransomNote 和 magazine ,判断 ransomNote 能不能由 magazine 里面的字符构成。
如果可以,返回 true ;否则返回 false 。
magazine 中的每个字符只能在 ransomNote 中使用一次。
示例 1:
输入:ransomNote = “a”, magazine = “b”
输出:false
示例 2:
输入:ransomNote = “aa”, magazine = “ab”
输出:false
示例 3:
输入:ransomNote = “aa”, magazine = “aab”
输出:true
提示:
1).1 <= ransomNote.length, magazine.length <= 10^5
2).ransomNote 和 magazine 由小写英文字母组成
实现算法:哈希表
有限长度,果断数组
方法思路:
//
class Solution {
public:
bool canConstruct(string ransomNote, string magazine) {
int record[26] = {0};
//add
if (ransomNote.size() > magazine.size()) {
return false;
}
for (int i = 0; i < magazine.length(); i++) {
// 通过recode数据记录 magazine里各个字符出现次数
record[magazine[i]-'a'] ++;
}
for (int j = 0; j < ransomNote.length(); j++) {
// 遍历ransomNote,在record里对应的字符个数做--操作
record[ransomNote[j]-'a']--;
// 如果小于零说明ransomNote里出现的字符,magazine没有
if(record[ransomNote[j]-'a'] < 0) {
return false;
}
}
return true;
}
};
p.s.
有点像有效字符串
自我实现
class Solution {
public:
bool canConstruct(string ransomNote, string magazine) {
int letter[26]={0};
int maga_len=magazine.size();
int rans_len=ransomNote.size();
for(int i=0;i<maga_len;i++){
letter[magazine[i]-'a']++;
}
for(int i=0;i<rans_len;i++){
letter[ransomNote[i]-'a']--;
if(letter[ransomNote[i]-'a']<0){
return false;
}
}
return true;
}
};
做题心得
这题比较熟悉,实现的还挺快。
题目:15. 三数之和
链接: leetcode题目链接
给你一个整数数组 nums ,判断是否存在三元组 [nums[i], nums[j], nums[k]] 满足 i != j、i != k 且 j != k ,同时还满足 nums[i] + nums[j] + nums[k] == 0 。请你返回所有和为 0 且不重复的三元组。
注意:答案中不可以包含重复的三元组。
示例 1:
输入:nums = [-1,0,1,2,-1,-4]
输出:[[-1,-1,2],[-1,0,1]]
解释:
nums[0] + nums[1] + nums[2] = (-1) + 0 + 1 = 0
nums[1] + nums[2] + nums[4] = 0 + 1 + (-1) = 0
nums[0] + nums[3] + nums[4] = (-1) + 2 + (-1) = 0
不同的三元组是 [-1,0,1] 和 [-1,-1,2] 。
注意,输出的顺序和三元组的顺序并不重要。
示例 2:
输入:nums = [0,1,1]
输出:[]
解释:唯一可能的三元组和不为 0 。
示例 3:
输入:nums = [0,0,0]
输出:[[0,0,0]]
解释:唯一可能的三元组和为 0 。
提示:
1).3 <= nums.length <= 3000
2).-10^5 <= nums[i] <= 10^5
实现算法:双指针
涉及去重求和,放弃哈希
双指针解法是一层for循环num[i]为确定值,然后循环内有left和right下标作为双指针,找到nums[i] + nums[left] + nums[right] == 0。
//
class Solution {
public:
vector<vector<int>> threeSum(vector<int>& nums) {
vector<vector<int>> result;
sort(nums.begin(), nums.end());
// 找出a + b + c = 0
// a = nums[i], b = nums[left], c = nums[right]
for (int i = 0; i < nums.size(); i++) {
// 排序之后如果第一个元素已经大于零,那么无论如何组合都不可能凑成三元组,直接返回结果就可以了
if (nums[i] > 0) {
return result;
}
// 错误去重a方法,将会漏掉-1,-1,2 这种情况
/*
if (nums[i] == nums[i + 1]) {
continue;
}
*/
// 正确去重a方法
if (i > 0 && nums[i] == nums[i - 1]) {
continue;
}
int left = i + 1;
int right = nums.size() - 1;
while (right > left) {
// 去重复逻辑如果放在这里,0,0,0 的情况,可能直接导致 right<=left 了,从而漏掉了 0,0,0 这种三元组
/*
while (right > left && nums[right] == nums[right - 1]) right--;
while (right > left && nums[left] == nums[left + 1]) left++;
*/
if (nums[i] + nums[left] + nums[right] > 0) right--;
else if (nums[i] + nums[left] + nums[right] < 0) left++;
else {
result.push_back(vector<int>{nums[i], nums[left], nums[right]});
// 去重逻辑应该放在找到一个三元组之后,对b 和 c去重
while (right > left && nums[right] == nums[right - 1]) right--;
while (right > left && nums[left] == nums[left + 1]) left++;
// 找到答案时,双指针同时收缩
right--;
left++;
}
}
}
return result;
}
};
p.s.
注意去重是重点。
前后指针相向寻找,求和大于目标,右指针左移,求和小于目标,左指针右移。
自我实现
class Solution {
public:
vector<vector<int>> threeSum(vector<int>& nums) {
vector<vector<int>> tri;
sort(nums.begin(), nums.end());
for(int i=0;i<nums.size()-2;){
int left=i+1;
int right=size(nums)-1;
while(right>left){
if(nums[i]+nums[left]+nums[right]<0){
left++;
}else if(nums[i]+nums[left]+nums[right]>0){
right--;
}else{
tri.push_back(vector<int>{nums[i],nums[left],nums[right]});
left++;
right--;
while(right>left&&nums[left]==nums[left-1]){
left++;
}
while(right>left&&nums[right]==nums[right+1]){
right--;
}
}
}
while(i<nums.size()-2 &&nums[i]==nums[i+1]){
i++;
}
i++;
}
return tri;
}
};
做题心得
去重有点绕,其实还是有点小问题的,比如[0,0,0,0],不过也实现了,只是有点不知道问题出在哪里,再找找。在多数求和中,如果涉及同一数组,有去重问题,双指针更方便。
题目:15. 三数之和
链接: leetcode题目链接
给你一个整数数组 nums ,判断是否存在三元组 [nums[i], nums[j], nums[k]] 满足 i != j、i != k 且 j != k ,同时还满足 nums[i] + nums[j] + nums[k] == 0 。请你返回所有和为 0 且不重复的三元组。
注意:答案中不可以包含重复的三元组。
示例 1:
输入:nums = [-1,0,1,2,-1,-4]
输出:[[-1,-1,2],[-1,0,1]]
解释:
nums[0] + nums[1] + nums[2] = (-1) + 0 + 1 = 0
nums[1] + nums[2] + nums[4] = 0 + 1 + (-1) = 0
nums[0] + nums[3] + nums[4] = (-1) + 2 + (-1) = 0
不同的三元组是 [-1,0,1] 和 [-1,-1,2] 。
注意,输出的顺序和三元组的顺序并不重要。
示例 2:
输入:nums = [0,1,1]
输出:[]
解释:唯一可能的三元组和不为 0 。
示例 3:
输入:nums = [0,0,0]
输出:[[0,0,0]]
解释:唯一可能的三元组和为 0 。
提示:
1).3 <= nums.length <= 3000
2).-10^5 <= nums[i] <= 10^5
实现算法:双指针
四数之和的双指针解法是两层for循环nums[k] + nums[i]为确定值,依然是循环内有left和right下标作为双指针,找出nums[k] + nums[i] + nums[left] + nums[right] == target的情况
class Solution {
public:
vector<vector<int>> fourSum(vector<int>& nums, int target) {
vector<vector<int>> result;
sort(nums.begin(), nums.end());
for (int k = 0; k < nums.size(); k++) {
// 剪枝处理
if (nums[k] > target && nums[k] >= 0) {
break; // 这里使用break,统一通过最后的return返回
}
// 对nums[k]去重
if (k > 0 && nums[k] == nums[k - 1]) {
continue;
}
for (int i = k + 1; i < nums.size(); i++) {
// 2级剪枝处理
if (nums[k] + nums[i] > target && nums[k] + nums[i] >= 0) {
break;
}
// 对nums[i]去重
if (i > k + 1 && nums[i] == nums[i - 1]) {
continue;
}
int left = i + 1;
int right = nums.size() - 1;
while (right > left) {
// nums[k] + nums[i] + nums[left] + nums[right] > target 会溢出
if ((long) nums[k] + nums[i] + nums[left] + nums[right] > target) {
right--;
// nums[k] + nums[i] + nums[left] + nums[right] < target 会溢出
} else if ((long) nums[k] + nums[i] + nums[left] + nums[right] < target) {
left++;
} else {
result.push_back(vector<int>{nums[k], nums[i], nums[left], nums[right]});
// 对nums[left]和nums[right]去重
while (right > left && nums[right] == nums[right - 1]) right--;
while (right > left && nums[left] == nums[left + 1]) left++;
// 找到答案时,双指针同时收缩
right--;
left++;
}
}
}
}
return result;
}
};
p.s.
注意去重是重点
自我实现(有问题)
class Solution {
public:
vector<vector<int>> fourSum(vector<int>& nums, int target) {
int n=nums.size();
sort(nums.begin(),nums.end());
vector<vector<int>> qua;
for(int i=0;i<n-3;){
for(int j=i+1;j<n-2;){
int left=j+1;
int right=n-1;
while(right>left){
if((long)nums[i]+nums[j]+nums[left]+nums[right]>target){
right--;
}else if((long)nums[i]+nums[j]+nums[left]+nums[right]<target){
left++;
}else{
qua.push_back(vector<int>{nums[i],nums[j],nums[left],nums[right]});
while(right>left&&nums[left+1]==nums[left]){
left++;
}
while(right>left&&nums[right-1]==nums[right]){
right--;
}
left++;
right--;
}
}
while(j<n&&nums[j+1]==nums[j]){
j++;
}
j++;
}
while(i<n&&nums[i+1]==nums[i]){
i++;
}
i++;
}
return qua;
}
};
做题心得
还没解决。。。解决再说,[0]时案例报错。