信号处理——降噪滤波:自适应滤波器

本文介绍了自适应滤波的基本概念,着重讨论了维纳滤波中的线性滤波器和基于LMS准则的最小均方误差方法。文章详细阐述了LMS算法的理论模型,并提供了代码示例,展示了如何在实际中应用这一技术来处理实时信号处理中的噪声抵消问题。
摘要由CSDN通过智能技术生成

自适应滤波

自适应滤波,就是利用前一时刻以获得的滤波器参数的结果,自动的调节现时刻的滤波器参数,以适应信号和噪声未知的或随时间变化的统计特性,从而实现最优滤波。自适应滤波器实质上就是一种能调节自身传输特性以达到最优的维纳滤波器。自适应滤波器不需要关于输入信号的先验知识,计算量小,特别适用于实时处理。


自适应噪声抵消

(维纳滤波——线性滤波器)

不相关序列的统计平均值为零的原理是基于平均数的概念。

示例:pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。
误差信号的最小均方值就是肠鸣音信号的最优估计。
但是需要肠鸣音信号与参考信号(噪声)不相关。若相关,需要知道输入信号的自相关矩阵和期望信号与输入信号的互相关矩阵。

问题:
1.虽然维纳解知道了,但两个相关矩阵不知道
2.如果信号非平稳,PR每次都不一样

最小均方误差准则的维纳滤波(LMS)

LMS算法是基于维纳滤波,然后借助于最速下降算法发展起来的。
通过维纳滤波所求解的维纳解,必须在已知输入信号与期望信号的先验统计信息,以及再对输入信号的自相关矩阵进行求逆运算的情况下才能得以确定。因此,这个维纳解仅仅是理论上的一种最优解。所以,又借助于最速下降算法,以递归的方式来逼近这个维纳解,从而避免了矩阵求逆运算,但仍然需要信号的先验信息,故而再使用瞬时误差的平方来代替均方误差,从而最终得出了LMS算法。

理论模型&代码实现

原文借鉴

代码如下(示例):

% 输入参数:
%   xn   输入的信号
%   dn   所期望的响应
%   M    滤波器的阶数
%   mu   收敛因子(步长)
% 输出参数:
%   W    滤波器系数矩阵  
%   en   误差序列 
%   yn   滤波器输出        
function [yn, W, en]=lmsFunc(xn, dn, M, mu)
itr = length(xn);
en = zeros(itr,1);            
W  = zeros(M,itr);    % 每一列代表-次迭代,初始为0
% 迭代计算
for k = M:itr                  % 第k次迭代
    x = xn(k:-1:k-M+1);        % 滤波器M个抽头的输入
    y = W(:,k-1).' * x;        % 滤波器的输出
    en(k) = dn(k) - y ;        % 第k次迭代的误差
    % 滤波器权值计算的迭代式
    W(:,k) = W(:,k-1) + 2*mu*en(k)*x;
end

yn = inf * ones(size(xn)); % 初值为无穷大是绘图使用,无穷大处不会绘图
for k = M:length(xn)
    x = xn(k:-1:k-M+1);
    yn(k) = W(:,end).'* x;  % 最终输出结果
end
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值