Kringing插值原理与工具箱使用

克里金插值是一种空间统计方法,通过加权求和来估算未知点的数据,寻求误差最小的最优系数。在MATLAB中,可以使用dace工具箱进行插值分析,其中dacefit函数结合了回归多项式和相关函数,如高斯函数,来拟合数据并调整参数。该方法适用于处理空间属性数据并进行预测。
摘要由CSDN通过智能技术生成

克里金插值原理

原理

用空间上所有已知点数据加权求和来估计未知点的值。但权重系数并非反距离插值那种取距离的倒数,而是满足某点处估计值 z’ 与真实值 z 的差最小的最优系数。
普通克里金插值法假设空间属性均一。空间任意一点(x,y)都有同样的期望c和方差d。

最优解

转为带约束条件的最优化问题。求解一个半方差函数。
空间相似度 d 由欧氏距离表达。空间相似度与半方差rij有函数关系。
由已知数据观测点找最优拟合曲线的函数关系,再用于查找预测。
参考链接

工具箱使用

MATLAB工具箱:dace

在dacefit函数中,参数的含义如下:

  • S:输入变量的样本数据矩阵,每一行代表一个样本点,每一列代表一个输入变量。
  • Y:响应变量的样本数据矩阵,每一行代表一个样本点,每一列代表一个响应变量。
  • @regpoly0:回归多项式函数的句柄,用于拟合输入变量和响应变量之间的回归关系。regpoly0表示零阶多项式,即常数回归模型。
  • @corrgauss:相关函数的句柄,用于描述输入变量之间的相关性。corrgauss表示高斯相关函数。
  • theta:相关函数的参数向量,用于调整相关函数的形状和范围。具体含义根据相关函数的定义而定。
  • lob:相关函数参数的下界向量,用于限制参数的范围。
  • upb:相关函数参数的上界向量,用于限制参数的范围。

参考链接

IGRF_MATLAB

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值