克里金插值原理
原理
用空间上所有已知点数据加权求和来估计未知点的值。但权重系数并非反距离插值那种取距离的倒数,而是满足某点处估计值 z’ 与真实值 z 的差最小的最优系数。
普通克里金插值法假设空间属性均一。空间任意一点(x,y)都有同样的期望c和方差d。
最优解
转为带约束条件的最优化问题。求解一个半方差函数。
空间相似度 d 由欧氏距离表达。空间相似度与半方差rij有函数关系。
由已知数据观测点找最优拟合曲线的函数关系,再用于查找预测。
参考链接
工具箱使用
MATLAB工具箱:dace
在dacefit函数中,参数的含义如下:
- S:输入变量的样本数据矩阵,每一行代表一个样本点,每一列代表一个输入变量。
- Y:响应变量的样本数据矩阵,每一行代表一个样本点,每一列代表一个响应变量。
- @regpoly0:回归多项式函数的句柄,用于拟合输入变量和响应变量之间的回归关系。regpoly0表示零阶多项式,即常数回归模型。
- @corrgauss:相关函数的句柄,用于描述输入变量之间的相关性。corrgauss表示高斯相关函数。
- theta:相关函数的参数向量,用于调整相关函数的形状和范围。具体含义根据相关函数的定义而定。
- lob:相关函数参数的下界向量,用于限制参数的范围。
- upb:相关函数参数的上界向量,用于限制参数的范围。