Anaconda配置说明

Anaconda配置说明

基本指令

查看已有的虚拟环境

conda env list

退出当前虚拟环境

conda deactivate

删除虚拟环境

conda remove -n <env_name> --all
conda remove --name <env_name> --all

原神自动钓鱼项目

ysfish

以管理员权限打开Anaconda Prompt!!!

以管理员权限打开Anaconda Prompt!!!

以管理员权限打开Anaconda Prompt!!!

以下操作均在Anaconda Prompt里面执行

前置准备

以管理员权限打开Anaconda后的路径默认为:

(base) C:\WINDOWS\system32>
  1. 创建新python环境并激活

  2. 先使用conda activate ysfish切换虚拟环境

# 创建虚拟环境
conda create -n ysfish python=3.7
# 激活虚拟环境
conda activate ysfish 
​

下载项目代码

git clone https://github.com/HuYo-OS/Genshin_auto_fish.git

依赖库安装

通过cd命令来到项目工程的目录下,然后再进入即可

# 切换命令行到本工程所在目录
cd genshin_auto_fish
# 结果如下
# (ysfish) C:\Users\76608\Genshin_auto_fish>

安装pycocotools

注意:

  1. 代理:香港且绕过大陆

pip install git+https://github.com/philferriere/cocoapi.git#subdirectory=PythonAPI
  1. 可以尝试使用其他镜像源

  2. 常用的几个如下(注意是http,不是https)

# 查看当前使用源
conda config --show-sources
# 添加指定源
conda config --add channels <url> 
#删除指定源
conda config --remove channels <url> 
channels:
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/pro/
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/bioconda/
  - http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/menpo/
  - defaults
show_channel_urls: True

requirements里的包

pip install -U pip
pip install -r requirements.txt

安装CPU版的PyTorch

pip3 install torch torchvision torchaudio

安装yolox

python setup.py develop

下载权重文件

从本链接的 Releases 下载权重放到工程目录/weights文件夹下(有三个.pth文件)

运行项目

GPU运行

python fishing.py image -f yolox/exp/yolox_tiny_fish.py -c weights/best_tiny3.pth --conf 0.25 --nms 0.45 --tsize 640 --device cpu

GPU运行

python fishing.py image -f yolox/exp/yolox_tiny_fish.py -c weights/best_tiny3.pth --conf 0.25 --nms 0.45 --tsize 640 --device gpu
### 如何重新配置 Anaconda 环境 在 PyCharm 中重新配置 Anaconda 环境的过程可以按照以下方式完成: #### 找到并更改项目解释器 进入 PyCharm 的设置界面 (File > Settings),定位至 **Project: <项目名称>** 部分,随后点击左侧菜单中的 **Project Interpreter**。在此处可以看到当前项目的 Python 解释器版本以及关联的包列表。 如果需要更换现有的解释器为新的 Anaconda 环境,则可以通过下拉菜单选择其他已有的解释器或者通过右侧的小齿轮图标来添加新环境 [^1]。 #### 添加现有 Anaconda 环境 当需要引入一个已经存在的 Anaconda 虚拟环境时,在上述提到的小齿轮选项里选取 “Add...”。之后在一个弹窗中切换到 **Existing environment** 这一标签页,并利用旁边的浏览按钮(通常表现为三个点 `...`),导航至本地计算机上的具体路径去寻找对应于所安装之 Anaconda 版本下的 `python.exe` 文件位置 [^2]。 对于 Windows 用户而言,默认情况下该文件可能位于类似于这样的地址: `C:\Users\<用户名>\Anaconda3\python.exe` 而对于 macOS 或 Linux 用户来说,它一般会在如下目录之中: - 对于 macOS 用户可能是 `/usr/local/anaconda3/bin/python` - 对于 Linux 则通常是 `/home/<用户名>/anaconda3/bin/python` 一旦选定了合适的执行程序后确认操作即可让 PyCharm 使用指定的新环境作为该项目的基础运行框架 [^1]。 #### 创建全新的虚拟环境 假如希望基于目前可用的一个基础镜像构建起独立运作的空间而非直接采用全局范围内的公共资源的话,“New Environment” 功能就显得尤为重要了。同样是在前述提及过的齿轮状工具栏当中挑选此项功能;接着定义好目标存储地点、依赖的基础发行版还有期望达到的具体 Python 主次版本号等参数设定完毕后再予以提交建立即成 。 ```bash # 示例命令用于展示如何手动创建 conda 虚拟环境 conda create --name myenv python=3.8 ``` 以上便是关于怎样在 PyCharm 当中针对 Anaconda 设置实施调整的大致流程说明
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值