in:(luna16)
*.mhd
*.raw
标注文件:annotations.csv
out:
大小为512*512,只包含一张scan的图片和掩膜
from __future__ import print_function, division
import SimpleITK as sitk
import numpy as np
import csv
from glob import glob
import os
import pandas as pd
try:
from tqdm import tqdm # long waits are not fun
except:
print('TQDM does make much nicer wait bars...')
tqdm = lambda x: x
#Some helper functions
def make_mask(center,diam,z,width,height,spacing,origin):
'''
Center : centers of circles px -- list of coordinates x,y,z
diam : diameters of circles px -- diameter
widthXheight : pixel dim of image
spacing = mm/px conversion rate np array x,y,z
origin = x,y,z mm np.array
z = z position of slice in world coordinates mm
'''
mask = np.zeros([height,width]) # 0's everywhere except nodule swapping x,y to match img
#convert to nodule space from world coordinates
# Defining the voxel range in which the nodule falls
v_center = (center-origin)/spacing
v_diam = int(diam/spacing[0]+5)
v_xmin = np.max([0,int(v_center[0]-v_diam)-5])
v_xmax = np.min([width-1,int(v_center[0]+v_diam)+5])
v_ymin = np.max([0,int(v_center[1]-v_diam)-5])
v_ymax = np.min([height-1,int(v_center[1]+v_diam)+5])
v_xrange = range(v_xmin,v_xmax+1)
v_yrange = range(v_ymin,v_ymax+1)
# Convert back to world coordinates for distance calculation
x_data = [x*spacing[0]+origin[0] for x in range(width)]
y_data = [x*spacing[1]+origin[1] for x in range(height)]
# Fill in 1 within sphere around nodule
for v_x in v_xrange:
for v_y in v_yrange:
p_x = spacing[0]*v_x + origin[0]
p_y = spacing[1]*v_y + origin[1]
if np.linalg.norm(center-np.array([p_x,p_y,z]))<=diam:
mask[int((p_y-origin[1])/spacing[1]),int((p_x-origin[0])/spacing[0])] = 1.0
return(mask)
def matrix2int16(matrix):
'''
matrix must be a numpy array NXN
Returns uint16 version
'''
m_min= np.min(matrix)
m_max= np.max(matrix)
matrix = matrix-m_min
return(np.array(np.rint( (matrix-m_min)/float(m_max-m_min) * 65535.0),dtype=np.uint16))
############
#
# Getting list of image files
luna_path = "C:/Users/jiaop/Desktop/luna16_dataset/"
luna_subset_path = luna_path+"set1/"
output_path = luna_path+"output_set1/"
file_list=glob(luna_subset_path+"*.mhd")
#####################
#
# Helper function to get rows in data frame associated
# with each file
def get_filename(file_list, case):
for f in file_list:
if case in f:
return(f)
#
# The locations of the nodes
df_node = pd.read_csv(luna_path+"annotations.csv")
df_node["file"] = df_node["seriesuid"].map(lambda file_name: get_filename(file_list, file_name))
df_node = df_node.dropna()
#####
#
# Looping over the image files
#
for fcount, img_file in enumerate(tqdm(file_list)):
mini_df = df_node[df_node["file"]==img_file] #get all nodules associate with file
if mini_df.shape[0]>0: # some files may not have a nodule--skipping those
# load the data once
itk_img = sitk.ReadImage(img_file)
img_array = sitk.GetArrayFromImage(itk_img) # indexes are z,y,x (notice the ordering)
num_z, height, width = img_array.shape #heightXwidth constitute the transverse plane
origin = np.array(itk_img.GetOrigin()) # x,y,z Origin in world coordinates (mm)
spacing = np.array(itk_img.GetSpacing()) # spacing of voxels in world coor. (mm)
# go through all nodes (why just the biggest?)
for node_idx, cur_row in mini_df.iterrows():
node_x = cur_row["coordX"]
node_y = cur_row["coordY"]
node_z = cur_row["coordZ"]
diam = cur_row["diameter_mm"]
# just keep 3 slices
# imgs = np.ndarray([3,height,width],dtype=np.float32)
# masks = np.ndarray([3,height,width],dtype=np.uint8)
# # try 1 slice
# imgs = np.ndarray([1, height, width], dtype=np.float32)
# masks = np.ndarray([1,height,width],dtype=np.uint8)#原版
imgs = np.ndarray([height, width], dtype=np.float32)
masks = np.ndarray([height, width], dtype=np.uint8) # 原版
# masks = np.ndarray([1, height, width], dtype=np.float32)#修改
center = np.array([node_x, node_y, node_z]) # nodule center
v_center = np.rint((center-origin)/spacing) # nodule center in voxel space (still x,y,z ordering)
# print(np.arange(int(v_center[2])-1,
# int(v_center[2])+2).clip(0, num_z-1))
# for i, i_z in enumerate(np.arange(int(v_center[2])-1,
# int(v_center[2])+2).clip(0, num_z-1)): # clip prevents going out of bounds in Z
# print('i=')
# print(i)
# print('i_z=')
# print(i_z)
# mask = make_mask(center, diam, i_z*spacing[2]+origin[2],
# width, height, spacing, origin)
# masks[i] = mask
# imgs[i] = img_array[i_z]
for i, i_z in enumerate(np.arange(int(v_center[2])-1,
int(v_center[2])+2).clip(0, num_z-1)): # clip prevents going out of bounds in Z
print('i=')
print(i)
print('i_z=')
i_z=i_z+1
print(i_z)
mask = make_mask(center, diam, i_z*spacing[2]+origin[2],
width, height, spacing, origin)
# masks[i] = mask
# imgs[i] = img_array[i_z]
masks= mask
imgs = img_array[i_z]
break
np.save(os.path.join(output_path,"images_%04d_%04d.npy" % (fcount, node_idx)),imgs)
np.save(os.path.join(output_path,"masks_%04d_%04d.npy" % (fcount, node_idx)),masks)
print(imgs.shape)
查看生成的npy文件:
import numpy as np
from matplotlib import pyplot as plt
working_path = "C:/Users/jiaop/Desktop/luna16_dataset/output_set1/"
imgs = np.load(working_path + 'masks_0008_0105.npy')
print(imgs.shape)
plt.imshow(imgs, cmap='gray')#灰度图展示
plt.show()