✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
智能优化算法 神经网络预测 雷达通信 无线传感器 电力系统
信号处理 图像处理 路径规划 元胞自动机 无人机
🔥 内容介绍
在机器学习领域,支持向量机(Support Vector Machines,SVM)是一种常用的分类算法。它通过在特征空间中构建一个最优超平面来实现数据分类。然而,传统的SVM算法在处理大规模数据集时存在一些问题,比如计算复杂度较高、内存消耗大等。为了解决这些问题,研究者们提出了一种基于最小二乘支持向量机(Least Squares Support Vector Machines,LSSVM)的改进算法,即BES-LSSVM。
BES-LSSVM算法是一种基于秃鹰算法(Bald Eagle Strategy)优化的LSSVM算法。秃鹰算法是一种模拟秃鹰捕食行为的优化算法,它通过模拟秃鹰的搜寻和捕食策略来寻找最优解。BES-LSSVM算法通过应用秃鹰算法来优化LSSVM的参数,从而提高分类性能。
BES-LSSVM算法的核心思想是通过优化LSSVM的超参数来提高分类准确性。LSSVM算法的超参数包括正则化参数和核函数参数,它们的选择对于算法的性能至关重要。传统的方法通常是通过交叉验证来选择最优的超参数,但这种方法计算复杂度较高且耗时。BES-LSSVM算法通过应用秃鹰算法来自动选择最优的超参数,从而减少了计算复杂度和时间消耗。
BES-LSSVM算法的具体步骤如下:
- 初始化一群秃鹰,并随机生成初始解。
- 根据当前解计算适应度值,并选择适应度最高的秃鹰作为当前最优解。
- 根据当前最优解更新其他秃鹰的位置,并计算新的适应度值。
- 重复步骤2和步骤3,直到达到停止条件(如迭代次数达到设定值)。
- 返回最优解作为LSSVM的超参数。
通过BES-LSSVM算法优化后的LSSVM模型在数据分类任务中具有较高的准确性和鲁棒性。与传统的SVM算法相比,BES-LSSVM算法能够更好地处理大规模数据集,并且在计算复杂度和时间消耗上更加高效。因此,BES-LSSVM算法在实际应用中具有广泛的潜力。
总结起来,BES-LSSVM算法是一种基于秃鹰算法优化的最小二乘支持向量机算法,用于实现数据分类任务。它通过优化LSSVM的超参数来提高分类准确性,并且在处理大规模数据集时具有较高的效率。未来,我们可以进一步研究BES-LSSVM算法在其他机器学习任务中的应用,并探索其更多的优化潜力。
📣 部分代码
function [model,Yt] = prelssvm(model,Xt,Yt)
% Preprocessing of the LS-SVM
%
% These functions should only be called by trainlssvm or by
% simlssvm. At first the preprocessing assigns a label to each in-
% and output component (c for continuous, a for categorical or b
% for binary variables). According to this label each dimension is rescaled:
%
% * continuous: zero mean and unit variance
% * categorical: no preprocessing
% * binary: labels -1 and +1
%
% Full syntax (only using the object oriented interface):
%
% >> model = prelssvm(model)
% >> Xp = prelssvm(model, Xt)
% >> [empty, Yp] = prelssvm(model, [], Yt)
% >> [Xp, Yp] = prelssvm(model, Xt, Yt)
%
% Outputs
% model : Preprocessed object oriented representation of the LS-SVM model
% Xp : Nt x d matrix with the preprocessed inputs of the test data
% Yp : Nt x d matrix with the preprocessed outputs of the test data
% Inputs
% model : Object oriented representation of the LS-SVM model
% Xt : Nt x d matrix with the inputs of the test data to preprocess
% Yt : Nt x d matrix with the outputs of the test data to preprocess
%
%
% See also:
% postlssvm, trainlssvm
% Copyright (c) 2011, KULeuven-ESAT-SCD, License & help @ http://www.esat.kuleuven.be/sista/lssvmlab
if model.preprocess(1)~='p', % no 'preprocessing
if nargin>=2, model = Xt; end
return
end
%
% what to do
%
if model.preprocess(1)=='p',
eval('if model.prestatus(1)==''c'',model.prestatus=''unschemed'';end','model.prestatus=''unschemed'';');
end
if nargin==1, % only model rescaling
%
% if UNSCHEMED, redefine a rescaling
%
if model.prestatus(1)=='u',% 'unschemed'
ffx =[];
for i=1:model.x_dim,
eval('ffx = [ffx model.pre_xscheme(i)];',...
'ffx = [ffx signal_type(model.xtrain(:,i),inf)];');
end
model.pre_xscheme = ffx;
ff = [];
for i=1:model.y_dim,
eval('ff = [ff model.pre_yscheme(i)];',...
'ff = [ff signal_type(model.ytrain(:,i),model.type)];');
end
model.pre_yscheme = ff;
model.prestatus='schemed';
end
%
% execute rescaling as defined if not yet CODED
%
if model.prestatus(1)=='s',% 'schemed'
model=premodel(model);
model.prestatus = 'ok';
end
%
% rescaling of the to simulate inputs
%
elseif model.preprocess(1)=='p'
if model.prestatus(1)=='o',%'ok'
eval('Yt;','Yt=[];');
[model,Yt] = premodel(model,Xt,Yt);
else
warning('model rescaling inconsistent..redo ''model=prelssvm(model);''..');
end
end
function [type,ss] = signal_type(signal,type)
%
% determine the type of the signal,
% binary classifier ('b'), categorical classifier ('a'), or continuous
% signal ('c')
%
%
ss = sort(signal);
dif = sum(ss(2:end)~=ss(1:end-1))+1;
% binary
if dif==2,
type = 'b';
% categorical
elseif dif<sqrt(length(signal)) || type(1)== 'c',
type='a';
% continu
else
type ='c';
end
%
% effective rescaling
%
function [model,Yt] = premodel(model,Xt,Yt)
%
%
%
if nargin==1,
for i=1:model.x_dim,
% CONTINUOUS VARIABLE:
if model.pre_xscheme(i)=='c',
model.pre_xmean(i)=mean(model.xtrain(:,i));
model.pre_xstd(i) = std(model.xtrain(:,i));
model.xtrain(:,i) = pre_zmuv(model.xtrain(:,i),model.pre_xmean(i),model.pre_xstd(i));
% CATEGORICAL VARIBALE:
elseif model.pre_xscheme(i)=='a',
model.pre_xmean(i)= 0;
model.pre_xstd(i) = 0;
model.xtrain(:,i) = pre_cat(model.xtrain(:,i),model.pre_xmean(i),model.pre_xstd(i));
% BINARY VARIBALE:
elseif model.pre_xscheme(i)=='b',
model.pre_xmean(i) = min(model.xtrain(:,i));
model.pre_xstd(i) = max(model.xtrain(:,i));
model.xtrain(:,i) = pre_bin(model.xtrain(:,i),model.pre_xmean(i),model.pre_xstd(i));
end
end
for i=1:model.y_dim,
% CONTINUOUS VARIABLE:
if model.pre_yscheme(i)=='c',
model.pre_ymean(i)=mean(model.ytrain(:,i),1);
model.pre_ystd(i) = std(model.ytrain(:,i),1);
model.ytrain(:,i) = pre_zmuv(model.ytrain(:,i),model.pre_ymean(i),model.pre_ystd(i));
% CATEGORICAL VARIBALE:
elseif model.pre_yscheme(i)=='a',
model.pre_ymean(i)=0;
model.pre_ystd(i) =0;
model.ytrain(:,i) = pre_cat(model.ytrain(:,i),model.pre_ymean(i),model.pre_ystd(i));
% BINARY VARIBALE:
elseif model.pre_yscheme(i)=='b',
model.pre_ymean(i) = min(model.ytrain(:,i));
model.pre_ystd(i) = max(model.ytrain(:,i));
model.ytrain(:,i) = pre_bin(model.ytrain(:,i),model.pre_ymean(i),model.pre_ystd(i));
end
end
else %if nargin>1, % testdata Xt,
if ~isempty(Xt),
if size(Xt,2)~=model.x_dim, warning('dimensions of Xt not compatible with dimensions of support vectors...');end
for i=1:model.x_dim,
% CONTINUOUS VARIABLE:
if model.pre_xscheme(i)=='c',
Xt(:,i) = pre_zmuv(Xt(:,i),model.pre_xmean(i),model.pre_xstd(i));
% CATEGORICAL VARIBALE:
elseif model.pre_xscheme(i)=='a',
Xt(:,i) = pre_cat(Xt(:,i),model.pre_xmean(i),model.pre_xstd(i));
% BINARY VARIBALE:
elseif model.pre_xscheme(i)=='b',
Xt(:,i) = pre_bin(Xt(:,i),model.pre_xmean(i),model.pre_xstd(i));
end
end
end
if nargin>2 & ~isempty(Yt),
if size(Yt,2)~=model.y_dim, warning('dimensions of Yt not compatible with dimensions of training output...');end
for i=1:model.y_dim,
% CONTINUOUS VARIABLE:
if model.pre_yscheme(i)=='c',
Yt(:,i) = pre_zmuv(Yt(:,i),model.pre_ymean(i), model.pre_ystd(i));
% CATEGORICAL VARIBALE:
elseif model.pre_yscheme(i)=='a',
Yt(:,i) = pre_cat(Yt(:,i),model.pre_ymean(i),model.pre_ystd(i));
% BINARY VARIBALE:
elseif model.pre_yscheme(i)=='b',
Yt(:,i) = pre_bin(Yt(:,i),model.pre_ymean(i),model.pre_ystd(i));
end
end
end
% assign output
model=Xt;
end
function X = pre_zmuv(X,mean,var)
%
% preprocessing a continuous signal; rescaling to zero mean and unit
% variance
% 'c'
%
X = (X-mean)./var;
function X = pre_cat(X,mean,range)
%
% preprocessing a categorical signal;
% 'a'
%
X=X;
function X = pre_bin(X,min,max)
%
% preprocessing a binary signal;
% 'b'
%
if ~sum(isnan(X)) >= 1 %--> OneVsOne encoding
n = (X==min);
p = not(n);
X=-1.*(n)+p;
end
⛳️ 运行结果
🔗 参考文献
[1] 孙峰超.基于最小二乘支持向量机的非线性预测控制[D].中国石油大学[2023-09-28].DOI:10.7666/d.y1709445.
[2] 杨钊,路超凡,刘安黎.基于PSO-LSSVM算法的表面粗糙度预测模型与应用[J].机床与液压, 2021, 49(6):5.
[3] 刘云,易松.基于双参数最小二乘支持向量机(TPA-LSSVM)的风电时间序列预测模型的优化研究[J].北京化工大学学报:自然科学版, 2019, 46(2):6.DOI:CNKI:SUN:BJHY.0.2019-02-015.
[4] 殷樾.基于粒子群算法最小二乘支持向量机的日前光伏功率预测[J].分布式能源, 2021, 6(2):7.DOI:10.16513/j.2096-2185.DE.2106019.