基于位移旋转不变特征描述符sRIFD实现图像配准附matlab代码 论文复现

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,

代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

🔥 内容介绍

特征描述符(例如尺度不变特征变换(SIFT))已经广泛应用于各种计算机视觉应用程序,并且已经提出了许多方法来使描述符适应多传感器图像。最近,辐射变化不敏感特征变换(RIFT)利用了相位一致性,该相位一致性对于光照和辐射变化是不变的,用于构建多传感器图像的描述符。然而,即使具有准确的关键点主方向,RIFT在某些旋转度的图像上表现不佳。为了解决这个问题,本文设计了一个SoMIM(二阶最大指数图),使用Log-Gabor滤波器的方向响应,然后构建了一个新颖的描述符sRIFD(位移旋转不变特征描述符),而无需计算主方向。sRIFD在几乎所有旋转角度的图像上表现均匀良好。为了评估sRIFD的性能,我们使用了三个图像数据集,红外-光学、热-光学和光学-光学数据集。定量结果表明,在不同旋转角度下,sRIFD在多传感器图像数据集上表现更好。

📣 部分代码

% This is a samplest implementation of the proposed sRIFD algorithm. In this implementation,...% rotation invariance part and corner point detection are not included.function [des_m1,des_m2,or1,or2] = sRIFD_rotation_invariance(im1,im2,s,o)% m1 and m2 are the maximum moment maps;% eo1{s,o} = convolution result for scale s and orientation o.% The real part is the result of convolving with the even symmetric filter,% the imaginary part is the result from convolution with the odd symmetric filter.[m1,M1,or1,~,~,eo1,~] = phasecong3(im1,s,o,3,'mult',1.6,'sigmaOnf',0.75,'g', 3, 'k',1);[m2,M2,or2,~,~,eo2,~] = phasecong3(im2,s,o,3,'mult',1.6,'sigmaOnf',0.75,'g', 3, 'k',1);a=max(m1(:)); b=min(m1(:)); m1=(m1-b)/(a-b);a=max(m2(:)); b=min(m2(:)); m2=(m2-b)/(a-b);a=max(M1(:)); b=min(M1(:)); M1=(M1-b)/(a-b);a=max(M2(:)); b=min(M2(:)); M2=(M2-b)/(a-b);% FAST detector on the maximum moment maps to extract edge feature points.m1_points = detectFASTFeatures(m1,'MinContrast',0.0001,'MinQuality',0.0001);m2_points = detectFASTFeatures(m2,'MinContrast',0.0001,'MinQuality',0.0001);m1_points=m1_points.selectStrongest(5000);   %number of keypoints can be set by usersm2_points=m2_points.selectStrongest(5000);M1_points = detectFASTFeatures(M1,'MinContrast',0.0001,'MinQuality',0.0001);M2_points = detectFASTFeatures(M2,'MinContrast',0.0001,'MinQuality',0.0001);M1_points=M1_points.selectStrongest(1);   %number of keypoints can be set by usersM2_points=M2_points.selectStrongest(1);% RIFT descriptorim11=imrotate(im1,15);im22=imrotate(im2,15);[m1,~,or1,~,~,eo11,~] = phasecong3(im11,s,o,3,'mult',1.6,'sigmaOnf',0.75,'g', 3, 'k',1);[m2,~,or2,~,~,eo22,~] = phasecong3(im22,s,o,3,'mult',1.6,'sigmaOnf',0.75,'g', 3, 'k',1);pt1=[m1_points.Location;M1_points.Location];pt2=[m2_points.Location;M2_points.Location];des_m1 = fct_calc_log_sRIFD_no_dominant(im1, pt1,eo1,  s,o);des_m2 = fct_calc_log_sRIFD_no_dominant(im2, pt2,eo2, s,o);

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码、论文复现、期刊合作、论文辅导及科研仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值