✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
有限元分析是一种工程领域常用的数值计算方法,用于模拟和分析复杂结构的力学行为。在进行有限元分析时,我们经常需要关注每个载荷步骤中出现的应力和应变张量,这些参数对于设计和优化结构至关重要。本文将探讨基于有限元分析的每个载荷步骤中出现的应力和应变张量,以及它们对工程实践的意义。
在有限元分析中,结构的受力状态可以通过应力和应变张量来描述。应力张量是一个描述物体内部力的张量,它包含了物体在各个方向上受到的力的大小和方向信息。而应变张量则描述了物体在受力作用下的变形情况,包括了物体在各个方向上的伸长、压缩和扭曲程度。通过对结构在不同载荷情况下的应力和应变张量进行分析,我们可以了解结构在不同载荷条件下的受力情况,从而为结构设计和优化提供重要参考。
在进行有限元分析时,每个载荷步骤都会导致结构内部产生应力和应变,这些参数的变化对于结构的安全性和性能至关重要。通过对每个载荷步骤中的应力和应变张量进行分析,我们可以了解结构在不同载荷情况下的受力情况,从而评估结构的受力性能和安全性。这有助于工程师们在设计和优化结构时,更加准确地预测结构的受力情况,从而提高结构的安全性和可靠性。
除了对结构的受力情况进行分析外,基于有限元分析的每个载荷步骤中出现的应力和应变张量还可以为结构的材料选择和工艺优化提供重要参考。通过对结构在不同载荷条件下的应力和应变情况进行分析,我们可以评估不同材料在不同载荷条件下的受力性能,从而为材料选择提供科学依据。同时,还可以通过对应力和应变张量的分析,优化结构的工艺参数,提高结构的制造效率和质量。
总之,基于有限元分析的每个载荷步骤中出现的应力和应变张量对于工程实践具有重要意义。通过对这些参数进行分析,我们可以更加全面地了解结构在不同载荷条件下的受力情况,为结构的设计、优化和材料选择提供科学依据。因此,在进行有限元分析时,我们应该充分重视每个载荷步骤中的应力和应变张量,从而更好地指导工程实践。
📣 部分代码
clear all
close all
clc
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%% INPUT PARAMETERS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
directoryRESULTS = "FEM_results"; % Directory containing stress and strain results for each node
blocklength = 5; % How many load steps are present in the .csv files inside "directoryRESULTS"
kFS = 0.4; % Material constant of Fatemi-Socie critical plane factor
Sy = 350; % (MPa) % Yield strengh
NameFile = 'Final_results.txt'; % Name of the results file
LoadSteps = [1, 5]; % Considered loadsteps
CP = "FS"; % or "SWT" % Which critical plane factor you want to plot
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
set(gca, 'color', 'none');
axis equal
title("Critical plane method: " + CP)
view(120,30)
%% FS %%
[M,I] = max(GammaFS); % Look for FS max index
FinalRESFS = RESFS(I,:);
gammamaxFS = M; % Look for gamma max
%% SWT %%
[M,I] = max(DeltaESWT); % Look for FS max index
FinalRESSWT = RESSWT(I,:);
epsmaxSWT = M; % Look for eps max
%% Plot critical node %%
hold on
scatter3(FemPoints(I,1), FemPoints(I,2), FemPoints(I,3),'o','MarkerEdgeColor','red','MarkerFaceColor','red')
legend('Critical node')
%% Write files
% open your file for writing
fid = fopen(NameFile,'wt');
% write the matrix
if fid > 0
fprintf(fid,'Fatemi-Socie critical plane factor');
fprintf(fid,' %s %s %s %s %s %s %s\n', 'Critical node number', 'FS', 'Smax (MPa)', 'Theta (rad)', 'Psi (rad)', 'Alpha (rad)',char(916,947,' ','m','a','x'));
fprintf(fid,'%s: %8.0f %1.8f %4.1f %1.4f %1.4f %1.4f %1.6f\n','Data',FinalRESFS',gammamaxFS);
fprintf(fid,'Smith-Watson-Topper critical plane factor');
fprintf(fid,' %s %s %s %s %s %s %s\n', 'Critical node number', 'SWT', 'Smax (MPa)', 'Theta (rad)', 'Psi (rad)', 'Alpha (rad)',char(916,949,'','m','a','x'));
fprintf(fid,'%s: %8.0f %1.8f %4.1f %1.4f %1.4f %1.4f %1.6f\n','Data',FinalRESSWT',epsmaxSWT);
end
clear variables
⛳️ 运行结果
🔗 参考文献
[1]孙楠楠.多轴疲劳寿命模型及其在曲轴强度分析中的应用[D].山东大学,2015.DOI:10.7666/d.Y2792054.