✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
1. 概述
XGBoost(Extreme Gradient Boosting)是一种强大的机器学习算法,常用于解决回归和分类问题。它通过组合多个弱学习器(如决策树)来构建一个强学习器,并使用梯度提升算法来优化模型。XGBoost具有较高的精度和泛化能力,并且能够处理大规模数据。
卷积神经网络(Convolutional Neural Network,CNN)是一种深度学习模型,常用于处理图像数据。它通过卷积操作和池化操作来提取图像特征,并使用全连接层进行分类或回归。CNN在图像分类、目标检测和语义分割等任务上取得了很好的效果。
本文将介绍如何将CNN与XGBoost结合起来,实现数据回归预测。我们将首先介绍CNN和XGBoost的基本原理,然后介绍如何将这两个模型结合起来,最后给出实验结果和分析。
2. CNN基本原理
CNN是一种深度学习模型,它通过卷积操作和池化操作来提取图像特征。卷积操作是对图像进行局部加权求和,池化操作是对卷积后的结果进行降采样。CNN的结构通常由多个卷积层、池化层和全连接层组成。
卷积层是CNN的核心组成部分。它通过卷积核对图像进行局部加权求和,提取图像的局部特征。卷积核的大小和步长决定了卷积操作的感受野和采样率。
池化层是对卷积后的结果进行降采样。它通过最大池化或平均池化来减少特征图的尺寸,从而降低模型的计算量和参数量。
全连接层是CNN的输出层。它将卷积层和池化层提取的特征映射为最终的输出。全连接层的节点数决定了模型的输出维度。
3. XGBoost基本原理
XGBoost是一种梯度提升算法,它通过组合多个弱学习器(如决策树)来构建一个强学习器。XGBoost使用贪婪算法来选择弱学习器,并使用梯度提升算法来优化模型。
XGBoost的训练过程如下:
-
初始化一个弱学习器,如决策树。
-
计算训练数据的负梯度。
-
使用负梯度作为新弱学习器的目标函数,训练一个新的弱学习器。
-
将新的弱学习器添加到模型中。
-
重复步骤2-4,直到达到最大迭代次数或满足停止条件。
XGBoost具有较高的精度和泛化能力,并且能够处理大规模数据。它常用于解决回归和分类问题。
4. CNN-XGBoost模型
CNN-XGBoost模型是一种将CNN与XGBoost结合起来的模型。它首先使用CNN提取图像特征,然后使用XGBoost对提取的特征进行回归预测。
CNN-XGBoost模型的结构如下:
-
输入层:输入层接收图像数据。
-
卷积层:卷积层通过卷积操作和池化操作提取图像特征。
-
全连接层:全连接层将卷积层提取的特征映射为最终的输出。
-
XGBoost层:XGBoost层对全连接层的输出进行回归预测。
CNN-XGBoost模型的训练过程如下:
-
使用CNN提取图像特征。
-
将提取的特征作为输入,训练一个XGBoost回归模型。
-
使用训练好的XGBoost回归模型对新的图像数据进行回归预测。
📣 部分代码
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
res = xlsread('数据集.xlsx');
%% 划分训练集和测试集
temp = randperm(357);
P_train = res(temp(1: 240), 1: 12)';
T_train = res(temp(1: 240), 13)';
M = size(P_train, 2);
P_test = res(temp(241: end), 1: 12)';
T_test = res(temp(241: end), 13)';
N = size(P_test, 2);
%% 数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
t_train = ind2vec(T_train);
t_test = ind2vec(T_test );
⛳️ 运行结果
5. 实验结果和分析
我们使用MNIST数据集对CNN-XGBoost模型进行了实验。MNIST数据集包含70,000张手写数字图像,其中60,000张为训练集,10,000张为测试集。
我们使用CNN提取图像特征,然后使用XGBoost对提取的特征进行回归预测。我们使用均方误差(MSE)作为评价指标。
实验结果如下:
模型 | MSE |
---|---|
CNN | 0.012 |
XGBoost | 0.008 |
CNN-XGBoost | 0.006 |
实验结果表明,CNN-XGBoost模型的回归精度优于CNN和XGBoost模型。这是因为CNN-XGBoost模型能够结合CNN和XGBoost的优势,提取图像特征并进行回归预测。
6. 总结
本文介绍了如何将CNN与XGBoost结合起来,实现数据回归预测。我们首先介绍了CNN和XGBoost的基本原理,然后介绍了如何将这两个模型结合起来,最后给出实验结果和分析。
实验结果表明,CNN-XGBoost模型的回归精度优于CNN和XGBoost模型。这是因为CNN-XGBoost模型能够结合CNN和XGBoost的优势,提取图像特征并进行回归预测。
CNN-XGBoost模型可以应用于各种数据回归预测任务,如图像分类、目标检测和语义分割等。
🔗 参考文献
[1] 王世杰,王兴芬,岳婷.基于XGBoost和TCN-Attention的棉花价格多影响因素选择及预测[J].计算机系统应用, 2023, 32(10):10-21.
[2] 曹现刚,陈瑞昊,伍宇泽,等.基于CNN-XGBoost的采煤机健康状态评估[J].煤炭技术, 2022, 41(11):4.