【电车】V2G模式下含分布式能源网优化运行研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

随着全球能源危机和环境污染日益严重,以电动汽车(Electric Vehicle, EV)为代表的新能源交通工具正逐步取代传统燃油汽车,成为未来交通发展的主要趋势。然而,大规模电动汽车的无序充电将对现有电网造成巨大冲击,增加电网负荷峰谷差,降低电网运行效率和可靠性。车辆到电网(Vehicle-to-Grid, V2G)技术作为一种新型的智能电网互动技术,能够利用电动汽车的储能能力,在电网需要时将电能反向输送至电网,从而平抑电网负荷波动,提高电网的稳定性和经济性。同时,分布式能源(Distributed Generation, DG)以其清洁、高效、灵活的特性,在构建新型能源系统、提高能源利用效率方面扮演着越来越重要的角色。将电动汽车V2G技术与分布式能源网相结合,能够进一步提升电网运行的效率和灵活性,构建更加智能、高效、可持续的能源系统。本文旨在探讨在V2G模式下,如何优化含分布式能源网的运行,以充分发挥电动汽车和分布式能源的协同效益,实现电网的安全、稳定、经济运行。

一、V2G模式的理论基础与优势分析

V2G技术的核心思想是将电动汽车视为一种移动储能单元,在电网需要时,电动汽车可以向电网释放电能,从而实现电网与电动汽车之间的双向能量流动。V2G模式的实现需要依赖于先进的通信技术、智能化的控制策略以及完善的电力市场机制。

V2G模式具有以下显著优势:

  • **平抑电网负荷波动:**电动汽车的充放电行为具有一定的可控性,可以通过智能调度,在电网负荷高峰时放电,在负荷低谷时充电,从而平抑电网负荷波动,降低电网峰谷差,提高电网的利用率。

  • **提高电网稳定性:**V2G模式可以为电网提供快速的功率调节和频率支撑,有效提高电网的稳定性和可靠性,减少停电风险。

  • **促进可再生能源消纳:**分布式能源如风能、太阳能具有间歇性和波动性,接入电网后会对电网的稳定性造成一定影响。V2G模式可以作为一种储能手段,平抑可再生能源的波动,提高可再生能源的消纳能力。

  • **降低电网运行成本:**V2G模式可以有效降低电网的峰谷差,从而减少发电机的启动次数,降低电网的运行成本。此外,电动汽车车主通过参与V2G调度,可以获得一定的经济收益,从而激发其参与V2G的积极性。

二、分布式能源网的特点与挑战

分布式能源网是指分布在用户端的、靠近负荷中心的发电系统,主要包括风能、太阳能、生物质能、燃气轮机等多种能源形式。分布式能源网具有以下特点:

  • **清洁环保:**分布式能源以可再生能源为主,能够有效降低化石能源的消耗,减少环境污染。

  • **高效灵活:**分布式能源能够根据负荷需求进行灵活调节,提高能源利用效率。

  • **靠近负荷中心:**分布式能源靠近负荷中心,能够减少电力输送损耗,提高供电可靠性。

然而,分布式能源网也面临着一些挑战:

  • **间歇性和波动性:**风能、太阳能等可再生能源具有间歇性和波动性,接入电网后会对电网的稳定性造成一定影响。

  • **双向潮流控制:**分布式能源网的接入使得电网的潮流方向更加复杂,需要更加先进的控制技术来实现双向潮流的有效控制。

  • **保护与协调:**分布式能源的接入会改变电网的短路电流分布,需要重新评估和调整电网的保护设置,以确保电网的安全可靠运行。

三、V2G模式下含分布式能源网的优化运行策略

为了充分发挥电动汽车和分布式能源的协同效益,实现电网的安全、稳定、经济运行,需要制定有效的优化运行策略。

  • **基于预测的智能调度:**利用历史数据和实时信息,对电动汽车的充放电需求和分布式能源的发电量进行准确预测,并根据预测结果制定合理的充放电计划,实现电动汽车和分布式能源的协同优化。

  • **考虑电网约束的优化调度:**在制定充放电计划时,需要充分考虑电网的电压、电流、功率等约束条件,避免电动汽车的大规模充放电对电网造成冲击。

  • **基于多目标优化的调度模型:**建立包含电网运行成本、电动汽车车主收益、分布式能源消纳率等多个目标的优化模型,并通过优化算法求解,实现多目标之间的平衡。

  • **分层控制策略:**采用分层控制策略,将控制分为三个层次:第一层为电网调度中心,负责全局优化调度;第二层为区域控制中心,负责区域内的电动汽车和分布式能源的协调控制;第三层为电动汽车和分布式能源的本地控制,负责根据接收到的指令进行具体操作。

  • **电力市场机制的完善:**建立完善的电力市场机制,允许电动汽车车主参与电网调度,并根据其提供的服务获得相应的收益,从而激发其参与V2G的积极性。

⛳️ 运行结果

🔗 参考文献

[1] 梅哲,詹红霞,苑吉河,等.V2G模式下基于电动汽车分群方法的配电网多目标优化运行策略[J].电力建设, 2018, 39(8):10.DOI:10.3969/j.issn.1000-7229.2018.08.008.

[2] 王秉政.氢储能与氢车对离网可再生能源系统的性能影响研究[D].浙江大学,2023.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电、电/冷/热负荷预测、电力设备故障诊断、电池管理系统(BMS)SOC/SOH估算(粒子滤波/卡尔曼滤波)、 多目标优化在电力系统调度中的应用、光伏MPPT控制算法改进(扰动观察法/电导增量法)
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值