✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
异构无线传感器网络(HWSN)由不同能量和计算能力的传感器节点组成。低能耗簇头(CH)选择协议对于 HWSN 的网络生命周期至关重要。LEACH(低能耗自适应分层聚类)协议是一种广泛使用的 CH 选择协议,它通过轮换 CH 角色来平衡能耗。本文探讨了 LEACH 协议,分析了它的优点和缺点,并提供了改进建议。
LEACH 协议概述
LEACH 协议是一个分布式 CH 选择算法,它将网络划分为簇,每个簇由一个 CH 管理。CH 负责收集簇内节点的数据,并将其聚合并发送到汇聚点。LEACH 协议的步骤如下:
-
**设置参数:**每个节点随机选择一个阈值,该阈值在 [0, 1] 范围内。
-
**CH 选择:**每个节点将自己的阈值与 CH 阈值进行比较。如果节点的阈值小于 CH 阈值,则该节点被选为 CH。
-
**簇形成:**非 CH 节点加入离它们最近的 CH 形成的簇。
-
**数据传输:**CH 收集簇内节点的数据,并将其聚合并发送到汇聚点。
-
**轮换 CH:**一段时间后,CH 角色轮换到其他节点。
优点和缺点
优点:
-
平衡能耗,延长网络生命周期。
-
分布式算法,降低通信开销。
-
提高数据聚合效率。
缺点:
-
对于大规模网络,簇大小不均匀。
-
CH 节点容易成为能量瓶颈。
-
对于异构网络,不能充分利用高能节点。
改进建议
为了解决 LEACH 协议的缺点,提出了以下改进建议:
-
**基于能量的 CH 选择:**考虑节点的剩余能量,为高能节点分配更高的 CH 概率。
-
**动态簇大小调整:**根据网络密度和能量消耗动态调整簇大小。
-
**多级聚类:**采用多级聚类结构,将簇进一步划分为子簇,降低 CH 节点的负担。
总能量迭代图
下图显示了 LEACH 协议的总能量迭代图。可以看出,随着网络运行时间的增加,网络的总能量逐渐下降。但是,改进后的 LEACH 协议(例如基于能量的 CH 选择)可以延长网络的总能量。
结论
LEACH 协议是一种经典的 CH 选择协议,它通过轮换 CH 角色来平衡能耗。然而,它对于异构网络存在一些局限性。通过考虑节点能量、动态调整簇大小和采用多级聚类等改进措施,可以进一步提高 LEACH 协议的性能。
📣 部分代码
% SEP: A Stable Election Protocol for clustered %
% heterogeneous wireless sensor networks %
% %
% %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% PARAMETERS %%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Field Dimensions - x and y maximum (in meters)
xm=100;
ym=100;
%x and y Coordinates of the Sink
sink.x=0.5*xm;
sink.y=0.5*ym;
%Number of Nodes in the field
n=100
%Optimal Election Probability of a node
%to become cluster head
p=0.1;
%Energy Model (all values in Joules)
%Initial Energy
Eo=0.5;
%Eelec=Etx=Erx
⛳️ 运行结果
🔗 参考文献
[1] 张子辰.基于LEACH协议的无线传感器网络路由协议的研究[D].太原理工大学,2015.
[2] 张子辰.基于LEACH协议的无线传感器网络路由协议的研究[D].太原理工大学,2014.DOI:10.7666/d.Y2693278.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类