【LEACH协议】基于集群百分比异构无线传感器网络LEACH协议含总能量迭代图附含Matlab代码

本文详细介绍了LEACH协议在异构无线传感器网络中的工作原理,分析了其优缺点,并提出基于能量和动态调整的改进措施,以优化网络性能和延长网络寿命。
摘要由CSDN通过智能技术生成

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

异构无线传感器网络(HWSN)由不同能量和计算能力的传感器节点组成。低能耗簇头(CH)选择协议对于 HWSN 的网络生命周期至关重要。LEACH(低能耗自适应分层聚类)协议是一种广泛使用的 CH 选择协议,它通过轮换 CH 角色来平衡能耗。本文探讨了 LEACH 协议,分析了它的优点和缺点,并提供了改进建议。

LEACH 协议概述

LEACH 协议是一个分布式 CH 选择算法,它将网络划分为簇,每个簇由一个 CH 管理。CH 负责收集簇内节点的数据,并将其聚合并发送到汇聚点。LEACH 协议的步骤如下:

  1. **设置参数:**每个节点随机选择一个阈值,该阈值在 [0, 1] 范围内。

  2. **CH 选择:**每个节点将自己的阈值与 CH 阈值进行比较。如果节点的阈值小于 CH 阈值,则该节点被选为 CH。

  3. **簇形成:**非 CH 节点加入离它们最近的 CH 形成的簇。

  4. **数据传输:**CH 收集簇内节点的数据,并将其聚合并发送到汇聚点。

  5. **轮换 CH:**一段时间后,CH 角色轮换到其他节点。

优点和缺点

优点:

  • 平衡能耗,延长网络生命周期。

  • 分布式算法,降低通信开销。

  • 提高数据聚合效率。

缺点:

  • 对于大规模网络,簇大小不均匀。

  • CH 节点容易成为能量瓶颈。

  • 对于异构网络,不能充分利用高能节点。

改进建议

为了解决 LEACH 协议的缺点,提出了以下改进建议:

  • **基于能量的 CH 选择:**考虑节点的剩余能量,为高能节点分配更高的 CH 概率。

  • **动态簇大小调整:**根据网络密度和能量消耗动态调整簇大小。

  • **多级聚类:**采用多级聚类结构,将簇进一步划分为子簇,降低 CH 节点的负担。

总能量迭代图

下图显示了 LEACH 协议的总能量迭代图。可以看出,随着网络运行时间的增加,网络的总能量逐渐下降。但是,改进后的 LEACH 协议(例如基于能量的 CH 选择)可以延长网络的总能量。

结论

LEACH 协议是一种经典的 CH 选择协议,它通过轮换 CH 角色来平衡能耗。然而,它对于异构网络存在一些局限性。通过考虑节点能量、动态调整簇大小和采用多级聚类等改进措施,可以进一步提高 LEACH 协议的性能。

📣 部分代码

% SEP: A Stable Election Protocol for clustered                        %%      heterogeneous wireless sensor networks                          %%                                                                      %%                                                %%                                                                      %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%              %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%clear;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% PARAMETERS %%%%%%%%%%%%%%%%%%%%%%%%%%%%%Field Dimensions - x and y maximum (in meters)xm=100;ym=100;%x and y Coordinates of the Sinksink.x=0.5*xm;sink.y=0.5*ym;%Number of Nodes in the fieldn=100%Optimal Election Probability of a node%to become cluster headp=0.1;%Energy Model (all values in Joules)%Initial Energy Eo=0.5;%Eelec=Etx=Erx

⛳️ 运行结果

🔗 参考文献

[1] 张子辰.基于LEACH协议的无线传感器网络路由协议的研究[D].太原理工大学,2015.

[2] 张子辰.基于LEACH协议的无线传感器网络路由协议的研究[D].太原理工大学,2014.DOI:10.7666/d.Y2693278.

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值