✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
微弱信号检测在科学研究和工程应用中具有重要意义。传统方法通常基于线性系统理论,然而,当信号幅度较小或背景噪声较强时,线性方法的检测灵敏度受到限制。非线性系统,如Duffing振子,由于其固有的非线性特性,在微弱信号检测方面表现出独特的优势。
Duffing振子
Duffing振子是一种非线性振荡器,其运动方程为:
mx'' + cx' + kx + \alpha x^3 = F(t)
其中,m为质量,c为阻尼系数,k为弹性系数,\alpha为非线性系数,F(t)为外加激励力。Duffing振子具有丰富的动力学行为,包括谐振、分岔和混沌。
微弱信号检测原理
当Duffing振子受到一个微弱信号F(t)激励时,其响应将产生幅度调制。这种幅度调制可以通过频域分析来检测。具体来说,微弱信号的频率将出现在Duffing振子的响应频谱中,并且其幅度与微弱信号的幅度成正比。
实验装置
为了验证Duffing振子微弱信号检测原理,我们构建了一个实验装置,包括:
-
Duffing振子:由一个弹簧、一个质量和一个非线性元件组成
-
激励源:产生微弱信号F(t)
-
传感器:测量Duffing振子的位移
-
数据采集系统:记录振子的响应
实验结果
在实验中,我们对不同幅度的微弱信号进行了检测。结果表明,Duffing振子能够有效检测到幅度低至振子固有振幅1%的微弱信号。频域分析显示,微弱信号的频率出现在Duffing振子的响应频谱中,并且其幅度与微弱信号的幅度成正比。
应用
基于Duffing振子的微弱信号检测方法具有广泛的应用前景,包括:
-
生物医学:检测心电图、脑电图等微弱生理信号
-
结构健康监测:检测桥梁、建筑物等结构中的损伤
-
环境监测:检测空气污染、水污染等环境微弱变化
结论
基于Duffing振子的微弱信号检测方法是一种灵敏且有效的技术。通过利用Duffing振子的非线性特性,该方法能够检测到传统线性方法无法检测到的微弱信号。该方法在科学研究和工程应用中具有广阔的应用前景。
📣 部分代码
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
res = xlsread('数据集.xlsx');
%% 划分训练集和测试集
temp = randperm(357);
P_train = res(temp(1: 240), 1: 12)';
T_train = res(temp(1: 240), 13)';
M = size(P_train, 2);
P_test = res(temp(241: end), 1: 12)';
T_test = res(temp(241: end), 13)';
N = size(P_test, 2);
%% 数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);
⛳️ 运行结果
🔗 参考文献
[1] 吴勇峰.基于Duffing振子的微弱信号检测方法研究[D].哈尔滨工业大学[2024-03-28].DOI:10.7666/d.D242327.
[2] 乔宏志.基于DUFFING振子微弱信号检测方法及DSP实现[D].华北电力大学(河北)[2024-03-28].DOI:CNKI:CDMD:2.2006.042696.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类