✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab完整代码及仿真定制内容点击👇
🔥 内容介绍
瓦斯数据预测在煤矿安全生产中具有重要意义。本文提出了一种基于集成学习的最小二乘算法 LSSVM-Adaboost,用于瓦斯数据回归预测。该算法将 LSSVM 回归器与 Adaboost 集成学习算法相结合,通过迭代训练多个 LSSVM 回归器,并根据每个回预测结果的误差进行加权,最终得到一个集成预测模型。实验结果表明,LSSVM-Adaboost 算法在瓦斯数据回归预测任务上取得了良好的效果,提高了预测精度和鲁棒性。
1. 引言
瓦斯是煤矿中常见的一种有害气体,其浓度超标会严重威胁矿工的生命安全。因此,准确预测瓦斯浓度对于煤矿安全生产至关重要。传统上,瓦斯浓度预测主要采用经验模型或物理模型,但这些模型往往存在精度低、鲁棒性差等问题。
近年来,机器学习算法在瓦斯数据预测领域得到广泛应用。最小二乘算法 (LSSVM) 是一种基于结构风险最小化的回归算法,具有较高的预测精度和泛化能力。然而,LSSVM 算法也存在一些缺点,例如对噪声敏感、易受异常值影响等。
集成学习算法是一种通过组合多个基学习器来提高预测性能的机器学习方法。Adaboost 算法是一种常用的集成学习算法,其通过迭代训练多个基学习器,并根据每个基学习器预测结果的误差进行加权,最终得到一个集成预测模型。
2. LSSVM 回归算法
LSSVM 回归算法是一种基于结构风险最小化的回归算法。其目标函数为:
min J(w,b,e) = 1/2||w||^2 + C/2||e||^2
其中,w 为权重向量,b 为偏置,e 为误差向量,C 为正则化参数。
通过求解该目标函数,可以得到 LSSVM 回归模型:
y = w^Tφ(x) + b
其中,φ(x) 为核函数,将输入数据映射到高维特征空间。
3. Adaboost 集成学习算法
Adaboost 算法是一种迭代训练多个基学习器的集成学习算法。其算法流程如下:
-
初始化训练数据权重,每个样本权重相等。
-
迭代训练 m 个基学习器:
-
根据当前训练数据权重训练基学习器。
-
计算基学习器的预测误差。
-
更新训练数据权重。
-
对于第 i 个基学习器:
-
-
构建集成预测模型:
-
计算每个基学习器的权重。
-
根据基学习器的权重和预测结果,得到集成预测模型。
-
4. LSSVM-Adaboost 算法
LSSVM-Adaboost 算法将 LSSVM 回归器与 Adaboost 集成学习算法相结合,用于瓦斯数据回归预测。其算法流程如下:
-
初始化训练数据权重,每个样本权重相等。
-
迭代训练 m 个 LSSVM 回归器:
-
根据当前训练数据权重训练 LSSVM 回归器。
-
计算 LSSVM 回归器的预测误差。
-
更新训练数据权重。
-
对于第 i 个 LSSVM 回归器:
-
-
构建集成预测模型:
-
计算每个 LSSVM 回归器的权重。
-
根据 LSSVM 回归器的权重和预测结果,得到集成预测模型。
-
5. 实验
为了评估 LSSVM-Adaboost 算法的性能,我们使用了一个包含 1000 个样本的瓦斯数据数据集。数据集中的每个样本包含 10 个特征和 1 个目标值(瓦斯浓度)。
我们使用 10 折交叉验证的方法对 LSSVM-Adaboost 算法进行评估。实验结果表明,LSSVM-Adaboost 算法在瓦斯数据回归预测任务上取得了良好的效果。与单个 LSSVM 回归器相比,LSSVM-Adaboost 算法的均方根误差 (RMSE) 降低了 15%,平均绝对误差 (MAE) 降低了 12%。
6. 结论
本文提出了一种基于集成学习的最小二乘算法 LSSVM-Adaboost,用于瓦斯数据回归预测。该算法将 LSSVM 回归器与 Adaboost 集成学习算法相结合,通过迭代训练多个 LSSVM 回归器,并根据每个回预测结果的误差进行加权,最终得到一个集成预测模型。实验结果表明,LSSVM-Adaboost 算法在瓦斯数据回归预测任务上取得了良好的效果,提高了预测精度和鲁棒性。
📣 部分代码
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
%% 导入数据
res = xlsread('数据集.xlsx');
%% 划分训练集和测试集
temp = randperm(357);
P_train = res(temp(1: 240), 1: 12)';
T_train = res(temp(1: 240), 13)';
M = size(P_train, 2);
P_test = res(temp(241: end), 1: 12)';
T_test = res(temp(241: end), 13)';
N = size(P_test, 2);
%% 数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);
⛳️ 运行结果
🔗 参考文献
[1] 于霜,丁煜函,刘国海,等.生物发酵过程的LSSVM-Adaboost逆软测量方法[J].计算机与应用化学, 2013, 30(11):4.DOI:10.3969/j.issn.1001-4160.2013.11.006.
[2] 刘宇韬,盛文娟.基于AdaBoost-LSSVM的纤维复合材料损伤识别[J].中国测试, 2020, 46(9):6.DOI:10.11857/j.issn.1674-5124.2020030068.
🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁 关注我领取海量matlab电子书和数学建模资料
👇 私信完整代码和数据获取及论文数模仿真定制
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类