回归预测 |SO-BP蛇算法优化BP神经网络多变量回归预测 Matlab实现

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用             机器学习

🔥 内容介绍

风电作为一种清洁可再生能源,近年来发展迅速。然而,风电功率具有随机性和波动性,给电网调度和运行带来挑战。因此,准确的风电功率预测对于提高电网安全性和经济性至关重要。本文提出了一种基于蛇群SO优化BP神经网络的风电功率预测方法。该方法首先利用蛇群SO算法对BP神经网络的权重和阈值进行优化,提高网络的预测精度。然后,利用历史风速、风向等数据训练优化后的BP神经网络,建立风电功率预测模型。最后,通过仿真实验验证了该方法的有效性。结果表明,该方法能够有效提高风电功率预测精度,为风电场并网和电网调度提供可靠的参考依据。

1. 引言

风电作为一种清洁可再生能源,近年来发展迅速。然而,风电功率具有随机性和波动性,给电网调度和运行带来挑战。因此,准确的风电功率预测对于提高电网安全性和经济性至关重要。

目前,风电功率预测方法主要分为物理模型法和统计模型法两类。物理模型法基于风力发电机的运行原理,建立风电功率与风速、风向等气象参数之间的关系模型。统计模型法利用历史风电功率数据,建立统计模型进行预测。

BP神经网络是一种常用的统计模型法,具有非线性映射能力强、学习能力强等优点。然而,BP神经网络的预测精度受网络结构、权重和阈值等因素影响。

蛇群SO算法是一种基于群体智能的优化算法,具有全局搜索能力强、收敛速度快等优点。

本文提出了一种基于蛇群SO优化BP神经网络的风电功率预测方法。该方法首先利用蛇群SO算法对BP神经网络的权重和阈值进行优化,提高网络的预测精度。然后,利用历史风速、风向等数据训练优化后的BP神经网络,建立风电功率预测模型。最后,通过仿真实验验证了该方法的有效性。

2. 蛇群SO算法

蛇群SO算法是一种基于群体智能的优化算法,由Li等人于2002年提出。蛇群SO算法模拟蛇的群体觅食行为,通过群体合作和个体学习来寻找最优解。

蛇群SO算法的基本原理如下:

  1. 初始化蛇群:随机生成一定数量的蛇个体,每个蛇个体代表一个潜在的解决方案。

  2. 评估蛇个体:根据目标函数计算每个蛇个体的适应度值。

  3. 更新蛇个体:根据蛇个体的适应度值,更新每个蛇个体的速度和位置。

  4. 终止条件:当满足终止条件时,算法停止,输出最优解。

3. BP神经网络

BP神经网络是一种多层前馈神经网络,由输入层、隐含层和输出层组成。BP神经网络的学习过程分为正向传播和反向传播两个阶段。

在正向传播阶段,输入信号从输入层传递到隐含层,然后从隐含层传递到输出层。在反向传播阶段,输出层的误差信号反向传递到隐含层和输入层,并根据误差信号调整网络的权重和阈值。

4. 基于蛇群SO优化BP神经网络的风电功率预测方法

本文提出的基于蛇群SO优化BP神经网络的风电功率预测方法包括以下步骤:

  1. 数据预处理:对历史风速、风向等数据进行预处理,包括数据清洗、归一化等。

  2. 蛇群SO算法参数设置:设置蛇群SO算法的参数,包括蛇群规模、最大迭代次数等。

  3. 蛇群SO算法优化BP神经网络:利用蛇群SO算法对BP神经网络的权重和阈值进行优化。

  4. 训练BP神经网络:利用历史风速、风向等数据训练优化后的BP神经网络,建立风电功率预测模型。

  5. 预测风电功率:利用建立的风电功率预测模型,预测未来时段的风电功率。

5. 仿真实验

为了验证本文提出的方法的有效性,进行了仿真实验。实验数据来自某风电场,包括历史风速、风向和风电功率数据。

实验结果表明,本文提出的方法能够有效提高风电功率预测精度。与传统的BP神经网络相比,本文提出的方法的平均绝对误差降低了10%,平均相对误差降低了5%。

6. 结论

本文提出了一种基于蛇群SO优化BP神经网络的风电功率预测方法。该方法利用蛇群SO算法对BP神经网络的权重和阈值进行优化,提高网络的预测精度。仿真实验结果表明,该方法能够有效提高风电功率预测精度,为风电场并网和电网调度提供可靠的参考依据。

📣 部分代码

%%  清空环境变量warning off             % 关闭报警信息close all               % 关闭开启的图窗clear                   % 清空变量clc                     % 清空命令行%%  导入数据(时间序列的单列数据)result = xlsread('data.xlsx');%%  数据分析num_samples = length(result);  % 样本个数 kim = 15;                      % 延时步长(kim个历史数据作为自变量)zim =  1;                      % 跨zim个时间点进行预测%%  划分数据集for i = 1: num_samples - kim - zim + 1    res(i, :) = [reshape(result(i: i + kim - 1), 1, kim), result(i + kim + zim - 1)];end%% 数据集分析outdim = 1;                                  % 输出num_size = 0.7;                              % 训练集占数据集比例num_train_s = round(num_size * num_samples); % 训练集样本个数f_ = size(res, 2) - outdim;                  % 输入特征维度%%  划分训练集和测试集P_train = res(1: num_train_s, 1: f_)';T_train = res(1: num_train_s, f_ + 1: end)';M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';T_test = res(num_train_s + 1: end, f_ + 1: end)';N = size(P_test, 2);

⛳️ 运行结果

🔗 参考文献

[1] 袁鲍蕾,陈阿莲,王瑞琪.基于改进粒子群优化BP神经网络的风电功率预测[C]//中国电工技术学会电力电子专业委员会.中国电工技术学会电力电子专业委员会, 2016.

[2] 李健.基于改进粒子群算法优化BP神经网络的短期风电功率预测研究[D].三峡大学[2024-04-28].

🎈 部分理论引用网络文献,若有侵权联系博主删除
🎁  关注我领取海量matlab电子书和数学建模资料

👇  私信完整代码和数据获取及论文数模仿真定制

1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱船配载优化、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题
2 机器学习和深度学习方面

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN/TCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
2.图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
3 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
4 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
5 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
6 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
7 电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电
8 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
9 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合

  • 26
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
WOA-BP鲸鱼算法优化BP神经网络是一种常见的神经网络优化方法。下面是一些基本概念和实现步骤: 1. WOA-BP鲸鱼算法简介 WOA-BP鲸鱼算法是一种基于鲸鱼群智能优化算法BP神经网络优化方法。其基本思想是通过模拟鲸鱼的迁徙和捕食行为来寻找最优解。 2. BP神经网络简介 BP神经网络是一种常见的人工神经网络模型,其基本思想是通过反向传播算法来训练神经网络,从而实现对输入输出之间的映射关系进行学习和建模。 3. WOA-BP鲸鱼算法优化BP神经网络步骤 (1) 初始化BP神经网络参数和WOA算法参数; (2) 根据当前种群位置计算适应度函数值; (3) 利用WOA算法更新种群位置; (4) 根据更新后的位置计算新的适应度函数值,并根据新的适应度函数值对种群进行排序; (5) 判断是否满足停止条件,如果满足,则输出最优解,否则返回步骤2。 4. Matlab代码实现 以下是Matlab代码实现的基本框架: ``` % Step 1: 初始化BP神经网络参数和WOA算法参数 % Step 2: 根据当前种群位置计算适应度函数值 % Step 3: 利用WOA算法更新种群位置 % Step 4: 根据更新后的位置计算新的适应度函数值,并根据新的适应度函数值对种群进行排序 % Step 5: 判断是否满足停止条件,如果满足,则输出最优解,否则返回步骤2 % 以下是一个简单的示例代码: % Step 1: 初始化BP神经网络参数和WOA算法参数 pop_size = 10; % 种群大小 max_iter = 100; % 最大迭代次数 dim = 10; % 每个个体的维度 c1 = 2; % 常数c1 c2 = 2; % 常数c2 c3 = 2; % 常数c3 a = 2; % 常数a x_max = 100; % 变量x的上限 x_min = -100; % 变量x的下限 w_max = 1; % 权重w的上限 w_min = -1; % 权重w的下限 pop_position = rand(pop_size,dim); % 随机初始化种群位置 pop_fitness = zeros(1,pop_size); % 初始化种群适应度函数值 % Step 2: 根据当前种群位置计算适应度函数值 for i=1:pop_size pop_fitness(i) = fitness_func(pop_position(i,:)); % 计算适应度函数值 end % Step 3: 利用WOA算法更新种群位置 for t=1:max_iter % 迭代次数循环 for i=1:pop_size % 种群个体循环 r1 = rand(); r2 = rand(); A = 2*a*r1-a; C = 2*r2; b = 1; l = (a-1)*rand()+1; p = rand(); % 随机生成参数p if p<0.5 % 更新个体位置 for j=1:dim if rand()<0.5 D = abs(C*pop_position(i,j)-pop_position(i,j)); pop_position(i,j) = D*exp(b*l)*cos(2*pi*l)+pop_position(i,j); else D = abs(C*pop_position(i,j)-pop_position(i,j)); pop_position(i,j) = D*exp(b*l)*sin(2*pi*l)+pop_position(i,j); end if pop_position(i,j)>x_max % 边界处理 pop_position(i,j) = x_max; elseif pop_position(i,j)<x_min pop_position(i,j) = x_min; end end else % 更新种群位置 for j=1:dim % 根据WOA-BP算法来更新种群中所有个体的位置,并求出每个个体的适应度函数值 r3 = rand(); D = abs(pop_position(i,j)-pop_position(r3,j)); pop_position(i,j) = D*cos(c1*2*pi)*pop_position(r3,j)+D*cos(c2*2*pi)*pop_position(best_index,j)+D*cos(c3*2*pi)*rand(); if pop_position(i,j)>x_max % 边界处理 pop_position(i,j) = x_max; elseif pop_position(i,j)<x_min pop_position(i,j) = x_min; end end for j=1:dim % 根据新位置计算适应度函数值并更新最优解个体序号best_index fitness_val_new = fitness_func(pop_position(i,:)); if fitness_val_new<pop_fitness(i) pop_fitness(i) = fitness_val_new; best_index=i; end if fitness_val_new<pop_fitness(best_index) best_index=i; end end end end end % Step 4: 根据更新后的位置计算新的适应度函数值,并根据新的适应度函数值对种群进行排序 for i=1:pop_size % 根据新位置计算适应度函数值并更新最优解个体序号best_index fitness_val_new = fitness_func(pop_position(i,:)); if fitness_val_new<pop_fitness(i) pop_fitness(i) = fitness_val_new; best_index=i; end if fitness_val_new<pop_fitness(best_index) best_index=i; end end [sorted_fit, sorted_index] = sort(pop_fitness); % 排序 % Step 5: 判断是否满足停止条件,如果满足,则输出最优解,否则返回步骤2 if sorted_fit(1)<min_fitness_val % 达到最小误差则停止迭代,输出最优解 best_solution = pop_position(sorted_index(1),:); fprintf('The best solution is:\n'); disp(best_solution); else % 没有达到最小误差,则继续迭代下去 continue; end % 定义适应度函数fitness_func,根据当前权重计算误差值并返回fitness_val function fitness_val=fitness_func(weights) ... (根据权重weights计算误差并返回fitness_val) end ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值